
www.manaraa.com

000162 1. _I 011

167 122

AUTNO2 Gardner, Edward
Proem/lolling tenguag
Ewaluatiou;

INST/T ?ION Air !ore* Huoen..Romourcos Ieb.

CAN'T,

SPONB AarNcl
REPORT NO
PUB DATE
NOTE

AVATLABLE FROM'

?DRS PRICE,
DESCRIPTORS

Technical Training Div.
Airy Force Human Resources
AFERL-TR-78-45
Aug 78
67p.: Appendixes may be mg Wall! legible due to
light and broker type

111 1116 161

Implementlkion an

Lowry APT,

Brocks'APB, Tome

Superintendent of Document!, U.S. GoerrimOr. Lqin
Office, We-shim:1ton, C.C. 20402 671-056/76)

MF-$0.83 Mc-13.50 Plus Postage,.
*ComputorAmeistecl Instructionv*Computer Moneged
Instruction: Comp6ter Frograms:Cont Effectiveness.;
Inaltructkonal limprotaleut; .inotructlonal
Military Training: Pregrae-f7aluition: *Programing
tam:jun(1Pa

IDENTIFIERS *Computer ftwareFASCAL

ng.

ABSTRACT
A r- rplementation of Computer ausisted/meneged-:

instruction languago (CAMTL) for qualitative and quantitative
improvements in the softvailm is'presented. The reformatted langue/go
is described narratively, and alox components of the system spftwire
are indicated and disc used. Authoring aids and imtedded support.
faciliti,os are also described, and key Atli ptcgrame used iff.the
development are discussed. The resulting system offers a method Apr
future improvement of the Air Force Advenced'tnrtrucional System
(AIS) 7omputer 6upport..systom without expenditure of additional unds
for computer support. '(Author)

********,* rusi ***

supplied by EDRS are the beg_ tha
from the original document,

can be, mad

*111**w***

www.manaraa.com

ARIAL:M.7845 m. ooctiomi
Ducat) 'PAC%
THE Pinson°,
MIND P
Stamp° 0
sower IriAL
soucsrtow Po

MSALTH,
PARS

SOP

tv F EOM
AtICIN

iw00 OPINIONS.
CIESAIIT1.1 REPEE-

fONAL INSTT Tuts or
lot L

UAGECAMIL II:

NDIVALUAT1tA

TECHNICitl. TRAINING dIVISION
Lowry Air Colors& 99230

August 1978
Final Repprt for Pirlod}ebr ¥mid M#a@»

ppr i;cti oblic !Minion d

AIR FORCE SYSTEMSCOMMAND
-BROOKS AIR FORCE BASE,TEXAS 78235

www.manaraa.com

4

NOTkCE

When D.S1 Government drawings', spetifieations, r other data are used
for any purpose other than a definitely telated Government
procurement operation, the Gdemment thereby' incurs no
responsibility nor any obligation whatsoever, and the fact that the
Governrnent may have formulated, furnished, or in any Wayupplied
thi said drawings, specifications, or other data is not to be regarded by
Implicatibn br otherwise, asqn any manner licensing the holder or any
other perSon or corporation, or conveying any rights or permhision to ,

nufacture, use, or sell any patented invention that may in any way
related thereto.

This final report was submitted by Technical Training D
,Force Human Resources Laboratory, Lowry Air Force Bas
802,30, under project 2313, with HO Air Force Human
Laboratory (AFSC), Brooks Air Force. Base, Texas 78235._

This report has been reviewed and cleared for open publication and/or
public releasei by_ the appropriate Office of Information (01) in
accordance witri7AFR 190-17 and DoDD 5230.9. There is no 'objection
to unlimited 'distribution of this report to the public at large, or by
DDC to the Natiolial Technical Information Service (NTIS).

'
This technical report has, been reviewed and is approved for publication.

MARTY R. ROKWAY, Technical Director
Technical.Training Divbion

RONALD W. TERRY, Coionel,USAF
Commander
%.)

www.manaraa.com

SE PITY CLASSIFICATION OF THIS PAGE (Wlion rata

REPORT 1CUMENTATIQN PAGE" READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

AFIIRL-TR-78-45
2. GOVT ACCESSION NO, S. RECIPIENT'S CATALOG NUMBER

4. TITLE (mid Sw/WRI

PROGRAMMING LANGUAGE ('AMIL II: IMPLEMENTATION
AND EVALUATION L'

5. TYPE OF REPO_ RT 6 PERIOD COVERED

Final
February 1=7_1"4,IkyL=1

6. PERFORMING ORG. REPORT NUMBER

7. AUTHO

Edward Gardner 1

B. CONTRACT OR GRANT NUMBE a

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Technical Training Division
Air Force Human Resources lAboratory
Lowry Air Force Base, Colorado 80230

10. PROGRAM ELEMENT, PROJECT, TASK
' AREA 6 WORK UNIT NUMBERS

61102E
23J 31407

. CONTROLLING OFFICE NAME AND ADDRESS
IIQ Air Force I luman Resources Laboratory (AFSC)
Brooks Air Fosce Base, Texas 78235 -

-

12., REPORT DATE
August 1978

NUMBER OF PAGE

4 MONITe7RING AGENCY NAME ADDRESS(If dlllerenI from Confrolllnq 011ice) IS.. SECURITY CLASS. (of Ihla report)

Unclassified

15e, DECLASSIFICATION/DOWNGRADING
SCHEDULE

I DISTRIBUTION STATEMENT (of (hie Rep

Approved for public release; distribution unlimited.

7 DISTRIBUTION STATEMENT (of the ehetrect emoted In Mock 20, 11.c/1110w-it from Report)

_.='

I6. SUPPLEMENTARY NOTES

.

t9. KEY WORDS (Corrilnue on reveres Side it nee eeedy end Iden(ily by lock number)

languages . computer workload , high-level language
CAMIL language . computer programs computer software
PASCAL language program performance structured programming
computer services computer assisted instruction programming language conpilers
computers ,crimputer managed instruction

20. ABSTRACT (Co [on e d I ice -y and Idarlilly bytdacit numb

A reimpl mentation of Computer assisted/ma_naged cost- ruction language (CAMIL) for qualitative and
quantitative improvements in the software is presented. The reformatted language is described narratively, and major
components of the system software are indicated and discussed. AuthOring aids and imbeddedsupport facilities are
also described.; and key CAMIL programs-used in the development are discussed. The resulting system offers a
method for future improvement of the Air Force Advanced Instructional System (AIS) computer support system
without expenditure of additional funds for computer support.

Di, I JAN 73 1473 EDITION OF I NOV 6S IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF. THIS PAGE (

www.manaraa.com

Objecthv

The syst4n software in the Air Force Advanced 'Instructional System (AIS), while providing
necessary classroom support for _courses ht Lowry AFB, did not meet original design performance
objectives. In addition, due to cost and other impacts, full features of the Computer assisted/managed
instruction language (CAMIL) implementation were not realized in the initial implementation. The
objective of NI; work unit was to determine whether a different approach to the implementation of
CAMIL could meet-Original performance objectives and also implement the full language and authoring aid
system whip simultaneously offering improved maintainability.

Approach

The CAMIL language was slightly modified to improve compilability and progr eadability. A new
compiler for the language siras implemented, based upon top down recursive anal s rather than the
table-driven approach used in the orliOnal mpiler. The system support program was revkitten in a high
level language, and the system was coniigur d to run with a reduced level of interaction with the operating
system. Several service functions were tra ferred to peripheral processor routines to allow for greater
parallel processing, and key CAMIL progra s were rewritten using the new system. Th resulting system
was to be performance compared with the original system in ddtail, but this has been deferred due to .a
change in operational requirements.

Results

Over 95% of the system has been implemented in the high level language PASCAL for ease of
maintenance of the system software. The new compiler runs approximately 10 times faster than the
original, and several possibilities remain for further speed enhancement. The new system provides for an
elaborate group, of autkoring aid functions while imposing no additional burden upon the author, and
numerous further programming aids could be added to the new configuration. The resulting CAMIL
programs aptiear to run from 5 to 20 times faster than their predecessors, but this relationship has not been
rigorously tested as was originally intended,

Conclusions

A path for considerable qualitative and quantitative improvement in the AIS sy
available if and when System loading increases: due to demand f ©r AIS computer services.

4

so ware is

www.manaraa.com

PREFACE

We would like to acknowledge the support of the AIS computer operators who
1ped us during the long ,oights when this work had to be done. We would also like to
ank Harold Montgomery of the McDonnell Douglas Corporation for his help in

nderstandlng the internal operation of the existing MS computer operating systdin. We
Lially thank Lt Col Roger Grossel for his support In initiating this work unit and for

his faith In our abilities to Improve a highly complex system with the limited manpower
and resources available in our organization.

www.manaraa.com

1. Introduction

Report Organitation . .

Language Description

1 CAMIL Language Overview

CAMIL Language Description

'Program Structure
Data Declarations
Data Definitions
Expressions. --

'Executable Statements ti

TABLE OF CONTENTS

@ 0

Per
5

.. .

Old Fav,orites
Modified or Improved Statement Forn
File Operations

1

9
12

13

16
.18

IV.

Sentence Library

CAMIL Compiler Program

Implementation Factors

Narrative Description of the CAMIL Compiler .

.

26

32 .

. 32 -
32

Data Base Interface N 33.

Compilation Driver 34

LeYjatScanner 34
Declaration Compiler 35'
Statement Compiler 36
Expression Compiler 37

V. CAMIL Execution Support System 39

Terminal driver 39

InitialilationSection- . 39

Key Input Section 40
Communication Section 40
Framing Section 40
Job Scheduler 40
Batch File Manager Section 41

3

www.manaraa.com

Executer

Contents (Con it

1 41 .

System Mode ,^ : 41

User Mode ,

File Manager . . .
' 43

Operating System Interlace 1

. ;44

. Peripheral Processor Routines 45

42

1NO

DAB
TMM

.......
I

45.
46.
46

VI. CAMIL, AutlioringSupp* Features and Aids 4 . . 46.

4 : L9GOripProgram 47
,

Program Editor ,E.E',Ef E E .. , .. .47
. .J

Autontktic Error Mode , . , . , , E . 1 E . 49

Thr-Liser Editor , 50

File Editor . E .. 1. . .. 1
..1. q)

Autopsy Program 51

Print Program 51

V- VII. Conclusions

nccs

.
\

Appendix A: Program Excerpt's . , , .

. 52

52

Appendix B: CAMIL II Language Syntax Charts 1 59

LIST OF ILLUSTRATIONS

Nate
1 Example Syntax Chart

Par
. . . ?, 8

www.manaraa.com

PROGRAMMING LANGUAGE CAMII,
IMPLEMENTATION AND EVALUATION

I. INTRODUCTION

The langtfage described in title doctonent has been implemented in support of a large Scale effort
within the United States Air Force training community to apply computer technology to improve techniCal
MI tng efficiency. The major effort in this program has been to apply individually asalgned self-paced

'ar in i4.methOds to four high - student load trebly cpurses at an Air Force technical training center. Within
this environment, a large scale computer alias been programmed to manage the instructional programs of
approximately 2,400 students by tracking their performance and capabilities and assigning appropriate
instructional packages based upon their past and predicted performance. The computer also performs many

,

of the a, dmirdstrative tasks created in such an environment, keeping all student records necessary to
properly irrianage each, student individually. One of the availahle instructional media will be interactive
computer assisted instruction (CAI), also supported by the central compnter,

In order to implement the above software, the implementatioe of a contemporary programming
-

language capable of servicing both student n. uinagement and student instructional terminals, is well u
software development, was deemed_necesaary. Define the decision was made to develop a new language
and/or,implementation, current languages supporting similar' activities were reviewed, After determining
that such an intesuated attempt at computer assisted/managed instruction had never before been attempted
on the. scale of this effort, it was also determined that suitable software had not been previously developed
in support of such an app_ lication. The most closely related efforts were a large scale computer managed
instruction (CMI) system at the Naval Air, Station in MemiShis, TenneAee, and the Plato IV effort at the
Computer Based Education Research Lthoratory of the University of Illinois in Champaign-Urbana.
Although both were outstanding examples of their respective types of prograds, it was felt that neither
offered software capable of supporting the type of integrated CAI/CMI environment being sought. For.
these reasons, t was decided that a contemporary programming language supporting the hest current
programming pr ctices would he specified and implemented to support the number of students anticipated
in the projected Air Force training.environment. This language was identified as CAMIL, a mnemonic fur
ComAter Assisted/Managed Instruction I Anguage.

Ete: use both the original implementation and the one described in this report are referred to as
CAMIL, the two languages have been referred to as CAMIL I and CAMIL II. This report will for purposes of
brevity use the term CAMIL for Jfie second implementation since our purpose i rimarily _to describe it
rather than to compare the two implementations. In the few places in which the two e being corn pared,
suitable discrimination will he made.

.,
CAMEL can be described in customary terms as a high level, general purpose,. Interactively

implemented, ALGOLlike, extensible programtning language. the syntactic format of the language is
generally like that of AI,G01:, while the-- seminitic features of the language generally represent extension and
gereralitation of the facilities of ctirretit PASCAL, A major addition to its capability is the inclusion of ;au
English-like statement called a "sentence-. composed from "words- such as "verbs," -prepositions," and
"adverbs." New words may he defined within the program, effectively allowing new statements to he added
k the language, within a predefined flexible syntactic formai. Another minor facility added, which also

/supports sentences, is the support of multi-element expressions or grtiups of -values. Such tilples may appear
as lists of verb objects in sentences, or as values which may be assigned to multi-element, user declared
types such as arrays or records. The user may also declare new prefix, infix, or post fix Operators for existing
or user defined types, or may extend existing operators to new user defined types, The language also

.. . ..
includes a large standard library of defined sentence words allowing highly set f-dociinienting programs to he,
implemented by relatively unskilled programmers.

www.manaraa.com

(AM li 4 ci;rri rd iqta 3bnlIlte hirtnry cinfr fur hr I nrut,u'l J)lii (ctrjuitinn (, DC) I Yf3I.k 7(1

erle etnupiten, lii u tutnpiIer I wtlt ten lii I'AS(A I auul jul pl ritirufi a prc aIIcI iflIrIlit tr I lal

cIm4pllatlun. All CAMIL prurarn are Interact ively_edi 1(41 hy urn till liUC ITIi)4I!iIF I't1jIu Written In (AM(I.

whIch curnpeur tively t ruct tIrC (AM II.)rngral!I liii ,iltnliilui r in' plIa I Itiri uilitJ Irave hut iriiiatI Ir

cuin pliet It' "ic iii anIiling UnnrcttAry t tin pliat Iliri ii nit' a grit I(ii4IiiIe. I)kewke, thç .rnuilIt

hnrrte tures ,rc Fererne in Itir,,iatlr in whj Ii it .ice t'' tlrtrrm InC rippling r f1rct iii

ehang* In nrir In jqc rrcr'tnpIlitlr'n itt affected riuutufuilei. I icing liii'. uiirulqiir, Ii i nut wi1)iti

recurriplk ODO line ftru;grarn ji cr'rraI urutMl lrlIu ricing null (I 'Pt F) aruti real fjnir unul ¶Iflct' lilikil

lflintt/uiitpcit (1/(and pruneciilig can 1w avtldril iii a lyplial uniflpllatiuin IttIatluin,

In nrukr lt r'iIi guile anuilycjc ul it uiileiit dat utJ'iiiI grnrIHtitin uf pfi!ldic rrpnrtc In hatch t,iu!le,
(AMII. lt,iç br,, pit plr,p,ciitr,I ilcitug lit'' cuiiin' ;idiIre1utg 'nveiititnui ac I'A7(A1 II, tic .iflutwing iuuituigthIc'

deccrIptIn,i u,tdig:t cuilected tin line hi t'e ;irt;ilyi'uI with ,\S(AI rigranli even iliulglt puicketi rr UI(1 lit

arrayi nrluiy c$iit in the ('A 1II. ilana hair, Art litter ia r (1:11 kagi' ;lllul%ii ui' halt hi pruigrani) Ii tall iilj Ilt

i;llilr iik I/I) ietvki'i v.liluihlr in ('AMiI tit iii ccc the ituitlerut ul.ita h'ac' ui,t lnutllatc''l hy ('AMII prrtgraIr1

itiittiltig In real 'tl1iur iii ailtIjIjitIt flue ('AMII cyctrill :uhluiwc t'r''n Ii, tie tlrt;iclird fruuli 117r jriifi;,fiulg

teittilituil tin1 lint in a 'lr;uckgrirlutuit'' tuttle ut .0 v'ivit r lrtijirul pritirity tUic prii'htri tiu 'hit;i uitiuilyili utnirl

IlItleeiiJlIY III C 'AwIli titIuiuiut\iiri i'ccIijly lecelVilIg .1 iiltillllIIul itiiuulut;ii. lit t;11 iljI.ttr grriet.&i ltcal'iluty if

flue yqtruji lie 1 A1lJ lurlu1uifrr itil it\t1('A I ll!lllilil'F hull ititrilat i' turn Ily Ii I lie ('tiIl lapi Ii'it' ill

tht rpIul tIrTirt uifltIi if cnrnpiluitirinc- ctiri hr auhtirveil without u,il,lg the iystcni pi inter, f1t;; aIluwin gy

tenittittunl .lri tfir cyclinir niu'tcvutk hi I' uucell lui ',ilti';lri tJrvillulIlIn7lt I liii iiulhluinIIg CililIl ulIrlInlIl

i'uuitcllt,Itti 1 very ilutitturtafif Jl;irf ii liii' (',\MiI altIlItutili
I

ittr ill liii! huait t iliri't ilulilat (Ifi the

11tttt1lic'VlI y f lie I Aki Ii uii u,.l 1 uili1u'l

lii uy Itt iii ku'1 glut' inuugiiJr ,utud Lu,ivlt.uru uli iiiiuiiru t Fi.lit ri'i,iteul, lliu' 11luv t hart ttec luptive

IlictIuttil ll('vui,lju('iI i'i t'jilIu ri tl'ttllllt ' I uII iii' uiu,l F'' It';u tutu tiuc' ('/tt1Il yl;u,uItiuli ('A1II hiac unit

'l('%lgflniI f,l(rFt1ujul c''iu,1iiluitut,tu tiuthi i' lt'w Iuirwaitl nclelcttc Cl lccittit'tJ ,t Iti't1jC)'tOLCtJlllt'it lurch hut

tutrw';urtl ,le"cl;'rici thu liltil. Ilc't'hl 11111 III' lli'tl.ili'ii ui Ill 1iu'' suiul;ili (iltiulIuulil ttlIltlll it thY

it uilti iusitlt iii .ul% uii,il jttl' i if uluthuf itt) 1(1(1 ilTll'fittl iIIiuii hut Firilititit till .uhlllut l_)
t tililti iXti itl,lulr cl:itnliilrIti iii tin' ('r lii l(I I F t(' (I uritrul I liti 11(X)) 'utii glue 1t;uitiiI

ii Ii' i,nu'c tli'Tllll'tt liv', liii' it ln ii'utll',,uit Lilt lVl' t lilllililltihll i,itl't y,rl',lhu'l 111.111 (11,11

liii, sri 111111, I IF' 1 U IVITi it Fh tltilv liii surrc,' iii ltillhhhll'r it I1'IIF illipiluulili Ii .tliuu'ct lilY

illiIIIIIIU ii it gu'tc 'hiti Itt fltuii It' 111141 IlhillilIr. tvtihittil liii l!lhtllllt'' tl',i'.ttiiiiy iltit I itlIttil II'

ulhIsliuti tutu Stt lill'u1 It lit It,Ill'iiiiht''', t, Ill (.I'' I r'ji Ill_Ill-.

I Fully tIll it liii t'',,uiiihu'' lilt mill II tiuit tIlt vu' lIlt'? lllil'l]y ç FlF;lTI gui li;uiuli,ti'

iriviriluiiilrrit iru uhuul (tc1lI vStc-lltr't I /tiII ii lltuilleriluritui it a i riili.'uI itluFlu,tlV I i 14111 iF II,

Jilt i'' ,titi \liVlt' .1 ihtli'lll ll'lth F 'it ItIl,lvtls IluullI IIItItF.ut' t''liii hi;uFit ?!Ilullyil ,t tIu'httI

tt'Ic1tit,iii llIilIlhilI 11111' IllS ti illIlilli, tlt-'uFIti'lF It tilt (itiitjiittt'r Iltiti I hit lull lr,tiuti II

I .ilttirjhui, ti li I utc-iuly ti hFlnitti I Pt'it'tllli Iltr hillS iu ill lilt 111115 f"ll ulltlFIltlTI lIllItli
iillit,lilllli'lll l'Ilitlhi,IIt ItillItiF tIll' It iI'i, FhIiT, 11)1' Fl/lI) stint h liSt' 11 ttl'll1!.ulillii puttlli li Ill lilt'

clInt, cllIillihIlllil;tlllulls IllF15%Ilt. fiti il(t\SllF I' t'iti,ljiI?uiFi ttj Vii. 1(11)11 tl'lllltFt 551111111 flIts littIt

IllIlitSilt \ii tIISlil it IltIlIlti it till' I IlliulhllIl 'llIui F iti lit I '\II1 lItn'Tululc Itt11 I 't III 1

11111 Ill 111u111t (I 1111 111111',, lltii, ''It I u It' flIt ti il, ItiIi it till thiltltti t1t jvutl 'iii Ii till lit 111,1

il.uliittT (ilTIii'f 'till F)lIiI, St III ut ii F
ill ti 1 t ttittl) lIlt1 liltIut lv ''itt, nin t \lII llIliIl,l!Iit;

I rt'IFtT1l I \h (F Ii U .tlilllltillFs t'Fl,l1I4 Titt I jill t IllS stiutti I :\Mll TItFllttl itt' %u?lttjc'ii). lll(tlullltl

I A\ulll llliitilliitrlttIltlll t t1tI tIVII t' ljt Ftllstulllli l))) llhilll,llV lljtlu,llt ,iIulli,tllJi lllItlli)it I

iF 'ihitlt I 111111 ,ItilltIII II liillllF tiiiit 1I1T'i1 list ItlIlihililt Ill tlililili5 11.11 Ihillttulit ill till_I

tlj'.l.Illit,t1'tItlt'IIt itlIsiiFt tfu%iIIiliittilt iii Tit.11tliih, lii llttIli lit lililillIt tit,. lit1 ill fiti Fit htirtilli

liF/IsIlilit I IIItlt' IlvIlliti ythilt ti lilt i.Iltl'll.11t' iil'lll[lIi hit' 111111 '\iItli('ltt I lfltl lilt lTltcnttlhi ft

Iii 111154' lIt JilI)lt,tlt lfl,hilllllitt'Ft llFtlFt tittihit' l,tt,tl liIhltItISiitl'lll lit iillltII'luill?,l?httl iliit'itt
thui it I I 1111- lIt ill I 111111'

jo

It J -

www.manaraa.com

Report Orson ion

This report her two major _ -: the first encompassing the language and the sec(ml encompitsaIng
the tuftware elements needed to Implement the language upon the CVIIIIR corriptiter.-We have tried to
prepent a narrative description of the language ind implementation, Hither than a formal language reference1.manual, In order to import to the reader or understanding of the ef required to Implement thli type of
software and of how the lafiguage and implementation relate_ to se other cordempotary languages and

Implements rms. What we have found mist diffIcill- to place into words has been the Impact of the
interactive/ nil dynamic 'authoring envirwment implemented dry thia system upon ourselves as

graireQrs. We have viewed this project (tour the beginning as the constorction of a motivating and
enabling tool '611 programme's and course developers vvitieh would allow lbe `rapid development and
evaluation of interk live commuter assialeil lialittillon And management. Although the pilleolial of sin h en
environment has not yet her!' tleMooatratril, we now have the atillity, lo 'make- sileh 411 environment
available. --)

'Animate. !Orwell

(his er lion of Illiforriott will poi-yid,. ;I ilec(tiption of the LANAI' I rrlguage' It is intended for
a motet Mu, luta a working hinillility with onteuutotAlv 111111 level programming languages, silt h

Al (j)1 ilt 1()VIA 1 This ri-mirl;11int14 eJsily rev ()011ie the 1:111illIW 111111 lif the

deleribed teatures in a language suich ac I AM therefore, very' fatmliir slats types or statement,' are not
des, riheil-lo greal detail illigir In I; nattalively in greater detail so that the

Iler will he able Iii.lelate these I., /3(ililirg itlipht he reiltesenteil by oilier I'ins,titdla in other
languages iff Will(flu he w,ril.rhle ul)hr, laolnagry

Ihr ('ANTI syl l.ry Is des. rtl>''d by .r s(Being the hasti style. used hy %oh
IReferrnce 1) tit ilesi eilie the syntax ill l'.AS('Al . tin Jortn.11 Irioriuttldrn IA loin(bon, grammar exists for
the (AMU. II implementation. relleLling the tils I (Italia lop-down, teorrsivc. rlecten11 compiler Is used tri

implement the language IrI111(ti'"11 itormal implementation (1'14;0101 :Mom
of v..111, h , 1.11,1re, hhi inielle.inenicd

..
otigital system, this miliiOes Ail,' 4,1111'1,k11': 'A11101 to,is t e mptii waled when
ontralet is used to iiiirliinent lAN1 1 I In 4 otopmisoci, the sYntas /tat t

ilesmittion tor the noon, (t .wil relAteil tii the compiler structure. lot
.."1,1,1,,

inAinten.ime inuntises.'ilthiiiirli not lyvr tier` (hot a ludticlion giaininiii has
with fewer t t.o thi: t tirrttilr ht Mc Amu II, d Idloolayi: In whiill

ambiguity', An tk tt rrlvrrl iry look inn 111 4'1,1 one I, 4,r11 at IlltVJ
`1

Within 111.1S 111,1.ifit-01 oval W;Ct, 1,l +1111(Mill .1 le ill !III'
' 1-111111' tipper .11;(1.ite Iffit, ite(1)0, .1 hilt ik.4R rl %i atmci Liwithekl

solo L.,1 .01

II 100(1 III litfraillIil t 11111)tlIst the m,t III

Ole '0,1111,14 A ',mitts in.).'10.11 I.. .N. 1, hr 1 drni,uir iii o limit.' it hp!, 44-jilt the

41 strdltt, , 1,111;q1,- 14 in 110,1V1.1% Ili I 1,i1, 1 Me implicit Its, Ow 11,0110

the hors .0,101 .iii t><tlir iik',111,11, it, tin 1In , Idttrl x11 11111111h 1116111 11I,1% I ,i !chic
Ilrrs to H.ti(t Ii err .1 !Mlle I 11011 .Ili` 11.1, 1 non 1101

IVrit,1% .111, Pin

11:11 klr, N .1 I

t v Mit

It= 4T < t yort..ovc I I'.
I I t yo0,-.0sts, l'e.? ; <Iy

y () ti oair)
pair) II yr)4..r.r)fiC

I i',t1 !I= iittt I our
<00(I r)i I r

6" 4.

flair 11

i. <414C I Ira r)

www.manaraa.com

Syntax Mart:

Figure I. Example Syn

The fall syntax chart for (AMR. Iras been reduced to two pages and this represents a considerably

tr e compact and understandable description than an equivalent reduction grammar. Since the subtleties

of lanittake semantics arc more difficult to present in an organized and pictorial manner thanlanguage

syri Ina exaniplen will be included in certain sect iinis of this report to indicate how language structures have

been used to implement built -in Iiicilities, many of which are'u9kually coded in.CAMIL.

IL (AMU. LAN UAW'. OVEKVONI

13140-13gri [(VOW' /hat a program be cribe syntactically such that key orreservedwords
indicrite the !tutor divisions of the program structure. In CA MIL a program is always entered, edited, and

execate0',ori-line.. All. programs are stored in a direct access file system with a set of direcanvelements
describiag the modules rpreseting the AMII, piograni. Major selections of the program are represented by

separate directory chains. A program directory entry is used to link to the sets of modules which compriae

CAMEL prograni;all tlitettorit entries are autoniatically ctcatcd and deleted as the user adds modules to

deletes niralides ii:ont this program. Any CAMII, program consists of one or more of the following types

of` mud tiles.

data ..-data'gtokral' 1r:cope but addressable by every executing copy of this program

PRI VA IT thita insscopc hitt a separate alloeation is kept for each executing copy of,this program

PR(subroutines

sEs;kivNTS scctioos 'code which can lie branched to /from my segment or_p_rocedure and which
.ntittlially-t(nOtuts mapa parfs ur sections_of tilt! CAMIL program

Ales111. Contains ooly three defiaritionallevels: one level for predeclared, built-in data and sub.

routines, a 141(Intl level of dais accessible from any 'segmeru or pro4dure, and a local level of data within

airy prieedure or segment. Only one'segment may he executing at any time, but there is no specifib limit to

the number rrt procedures Whic,h may be recursively activated at. any time. Mille this is more restricted than

PASCAL, it substantially gimplities many author and user problems which might otherwise arise when

asyuchrortutisieallbes 01 the lauxuagelare mei'. (These are explained later.)

SHAM' D. arid PR WAIT, modules are used only, to contain type and storakdeclarations and cannot

be, executed_ rxecotton of .1 (AMU, program beginrrai the first line of the first segment in the program

directy, alter the Last line 01 a segment is executed, control transfers to the first line (*the following
the prop.im ends when rt is speed-wally exited by an exit function or when the last line of the last

Segliierit is executed. Control may Also he transferred to any segment by a "GOTO" to the narrte of the

chosen seou'hi.

)'rocedutes ate not t xeciiietl unless specifically called and will return control to the statement fol
lowing their call unless a "GO 10" to some segment is executed within the procedure..An escape to any

segment results in escape, troin all procedures currently activated and a return of all local storage

allociakd tot Ow conebtfy active procedures :Ind segment. CAMII, allows the program author to also define-

asyoch ronoirsry acftviP "function keys''ari the program which' will transfer control at the user's initiative to
places de,,irriaterl'.hy the ambit ihns. while the execution sequence of a program is determined by strict
rules tit the language, the actual' path taken through a program can he as flexible as the program author

wishes to allow.

www.manaraa.com

CA11JL programs can ctm,niwticate with iatrh ittliet tliio yb seve1t,Jtt.ihte iiiui I diticicit!

executions ui the' same program c-,in transte'r data thritugli SHARII) dti riwdiiIe iti tht''iiyh the ('AMIL

- data base vhich is a record orientel. direct access lile systclii SceLil ittcieiit (,\%llt 1 IjIOS tan

communicate through another tvpe' cd SIIARIl) data inoiltik' tdletl S'1S I tM SI RI j) winch iuti'.t he

defined at the system level as part itt a special ('AMII progriiii tiitiiiitiiy the sit_neil tIit;i iniidtiles Ans'

two authors can also CUillTliuJiicJtc iii real tulle tiiitih i toil iitii tieiiits ii'tss cr1 teiiniiitls tither

failities allow a prograill author iii execute a ptograiii II siiiafl steps. mtcitctivel< itips\ a pioi'riill ciii

request, monitor the display ot' student w is ccntIlig itS pittgiiiii nid hip u\t'Clitliiii t'tOtiS titine

'with the complete' data situation at the point ot tailiiie'.

I11 ('A4I1. I./ers(i[%(;t lHS{'RIi'i Ii IN

irinIciure

('AMII. consiits cil two distnic hut neiged parts, tue core' laiicn,ee and the evtcrustliti Iaiieuit'e Flie

core language' is generally cuitipuled dirt'ctl ilitti maclone cotic vlucii nnlltIl1'Jits its lilealnily the

extensihic ft is in:uitiiy nnplciiieutcd through built-ni ni user dt'tnied pritciluit's. diteh sliiitii selnuihits

to Sentences and excntled ii)Ciatr. All cviit:iX 5 ttei. hut ssithni the es.teiisihht' hut itt the latnuat'e it is

rathe'r flexible. The core latiguagi' sttptiorts ha.sic ts pt's such as nitcet'r. iiuuiiht'u ht,iiaclei, lteitl, stntn'

mid textual lisplass. troni hit-se hisit types, 11101' ciiiiiple'\ is n's pissihl ccinT,iijli;ti' ilIlulhipie

conipitneruts, inav he dctini'il i, the IL\t'r. -

('AMII ni:ike's tlisttnctriiii hetwet'n IN 11(1 R shthi iiias hit' (isctl as nuniciuc tir is hit iiht'iIiiutui'il,

and NIJMIIER, which is .is,sniiie'd to he ieil iiiiiiihii .111(1 siittje'ct Itt the usual sitht'-ettects itt tiiiiieited

preciin iliathune arithmetic. (MII is titlei,uit ill-its etiuVeisittlis ht'twccii thiesc ivhtes and also sshen it

compares irite'riial unnuheis (ii iesptinses euteii'd his mounts, tilt art' eieiit.'i,illv less luletItt.' 111111 t]ii,ttnty

point aritinnetic units (AMIL snhllxii ts a Si-eh,i,aeter set I .it iii whuth .uc pt'r1nuuetttl\ Ittitteil liii

ti'rnnnais and syste'nl hue piiiitt.'i anti I 2tt iii schicli ejn tie touted svithnt thit' nilei.uctivi teiinin.ils is ibm to

l by 16 iltit raster pattenu i tie ,iiithtti tli'Siit'S. Stiiii lit' ahlitsst'ii tiVel the lull .' ibi:u;ie tt'l St't. intl a

slwcial coiistruct called .0
"wtirdstrnig'' cati hi' liii thineiisittn,ii, :iihttssiity ic ttluihtiete ',t'iet'n it diii to h'

writ ten wi iii a si ugh' tvri Ic sen tenet'.

(AMII. Supports RI(()Rl) auth ARRA\ stIik'tiuui'tl tVhll'5 1101 aIsti illtt\Vs liii' ,uuthtti tit spceit\ ihttt

tlue'y be PA('KLl) urisot:ur as re'.isitn;iliie lou tlat,u spact' ettuisi'isatiitii Au: ,s ale itetuiii:tI!s iiulectt hty

IN'rI(;FR expressittuis or iisci di'htit'tl iiii'e's itt ililitiuitilllt. s,iltuec is iii I'AS(Al lii ('AMII hitiweveu - hit'

('ASI: variant 01 PAS('AL. is gciieruli/t'ti. any held only lie a v.uiiaitt held, anti the cast' sehi'ctoi held is

iuutttunatically set by geuterateel ctid whicnevt'r a uecoid is c0.tlihiiSt'i1 is a uuiiilli-elt'nit'nt t'xprt'ssittii 'fltis

Ituultortaltt disIutuctittu allows hit' compiler ttt type tlata hit the exi'cutulii' ('AMIL plttgu.iin :iiith ssihh lie

e'xplaine'iI to coiuintuctuon with liii' st'nte'nct' t'xtensuhilit te,ttuiut' which it stijtpiiits I Inhke l'AS('.I

CANIII allows nitultu-tlenient lult'rals to h1' _tint1ii'd. ibm, ,ulittwuii', ,&lRA\ intl lh,t(ORII t'xltlessittuit,

ithie'r tliuui lorciuig the uiSt'i iii t'.Xlillcitiv assign tnt-h told ol a nt olil lii till ll.i% Ilirs is 1)ntituullilS'

iiiiportant wiucuu t,oiuihuuutd with ttthhe'i aspects cult is OIl I(INAI tjt'Ids iii .1 ut'cttiil it ;illtisvs a n',t'utti

define sentence's eiinuupletelv uui ('AMIl o Inch aie suuhtstnuutiallv lIttle coiliplt's thi,uuu tht' typic_il itoh ii 'iii lIe

statement and which may lie. wrut1e'uu ivithi .10 ,uhiutlnii's uiiiiuht'u itt pau,uiiit-tt'us lilt! niltthuhieis (AMII

iuuaiuitnuins detiuntional idt'ntiiv hetwt't-ut ctilliptiseit t'xprt'ssiolis intl the ,uctual htii,tunth'I lu'tts itt 1tuiict'duuut's

anti also hetwei'ii prixt'tltiues, Iouni,il tt,ir,uunetei lusts, and ut'coud iletunutittlis I ins .0 huioei'tlnue t,uiu he

considereti as an operator tlehttetl uutittlu a tt'citid ihi'tnutuitii, ooI ,t putict-dlne c_ill ciii hit' citllsithe'it'tl is

prel'ix operatoracting liii Ii citmuipitsed t'xjtut'ssuiin lnhx auth postlix tipeuLtitis alt' ill umniuut'dt,mte i'\tt'uisiitn itt

this ile'a vltieli provides .1 niuuttiriui h,isis iou ttpt'rnittir e-xtensihulutv iluihtheilleluiltlttli

('IhuN1hI. sulthuiuts .0 thicer ,utcess data biase tlillllit'ti st'vt'i,il sulitilt' lilt' ithtt'lnitois .hl tilt's lit' shined

iuuiuong ill ('ANIII puiiyiailis 31111 uii.uv ht' ttpeot'tl Sliliuiht,uiiettilsl\ ti ,uii\ (tttII lhittpl,tltlS hht'ittttt'u1 ii

by a tile security cystt'llu. Ituttyr.uuuis lit' lt ulailit' nnttt'ih Itt hle'utttuuu shtt'iitut tilt' Itttt'l,tiitiiis Oil 1hi1n,itt'1l

I,

www.manaraa.com

Operations suptmt !tut allow individual recordsiti be tcaL written. deleted, or updated, Records are
automatically reserved while updated tee avoid the Pli two different executions or programs
updating the same record, 11 les may he accessed by Miles or seeleICtitcdly or by tilled address. All tiles are
structuied 'as tiles of some specified type :Tile Identifier; can refer to.either the current (lila contained in
the central memory tile hinter or to the associated tile sequence stilted on the dick, depending upon
whether 'the context in which the identitiet appears implies a -reterence to data or a tile operation. A single
statement similar to the l'ASCAI WI III statement allows,;(particular 'veinal to he reserved; readnp,
ilereferenced as in the l'ASUAI WHIT updated, rewritten, and released. 'All file opoiation statements allow
trl 1.1.tiF clause which is mocessed instead of the file opetation in the event that the tile operation cannot
he successfully conwleted. Although inammuni silt` is specified when a file is defined, the actual
number of records 01 the tile 1C etVIIAllett: ;and the presence or alesence of a particular record can he
determined.

The familiar IF- statement es ctiftlrt t t d by (':sett and an addition.il statement is added

tit -,14ipport interruption of the nominal progtam flow try the user it programmed hy the
The author can use II I)f) statements tee ptovtde asynchronous transfer of control to the "IX)-

statement in the event that the nset pie-se' s one eel the torte boss keys listed,iti the -IF" clause. This feature
allows Elie author to make .1 areas eel (ipimus ;iyailahle Ina user without having to cheek explicitly

lot them at :ins time Cel tam MA\ :thee he handled 1.1511112 this feature, such as tile

emirs, system teonination Cis the ,I11111110,:0S114' civets.

rite \VI Ill statement nom PASCAL Is implementedis is the tihigeiutous IQ statement. A forth of

the it) I statement is Iere sRicel Much combines the (x)1(1 and LAS1- staletne 'itt funilievts= In this CitYlt)

ASI berm, the 'ides tor esotession tianstels eeintiol to a selected tagged statement, but branch instructivms
ate not genet:nod el the end set each case. Iles ieults in A rereeVieet ketn111,0 le) the eeelliptIted

'et Atelllestlf fetAMInee tre,ttltel(11,11 tO1111 eel Ire CANi. StAtellIelit and acIneves the semantic ettictency

whie.11 tae e_ertain situations 4, ,iiitd t.ANtit tttimds cAst. ,ritcinettt to
'thin& IISI \111, .111+1,A (ISO tee the Set eel Ileeteecerle VAIIIeS eel tile selector rile farndiar

H. 10 And Vs 1111 1 statements ell combried into .1.stiigle itelative statement allowing

optional-selee. non eel ,ens eel all eel the altos,. possitilleties and also the In increment, somehow lost in the

ttansitioi1 nom ,Al (..101. tee P.AS(Al... An itelative case like statement, called the it1I)6 statement, is
alreWeet -111k1 provides leer the collet Hon eel 'an input twin the usei, the compaiison of that input with
possible matching anti..apateel eel the event of a match, ter exec ution of

.011 optional I I SI e 10'0110 e eemhlleni II 110 match IS Ot the r(7.*_illOilSe when

like iitaich is speiited by the aruihor flue to the
tlextlnItty it the tsponse smtictice: 1 he 11001 statement is highly usable in many situations in
winch responses ate' solicited nom student risers ,inkt was delived tiom the IffFOR language (Reference 3).
Vile RI' I 14tN statement has ,lie' tt ilium! and inovides .1 needed alternative tee the laliels otherNvise

(Jot) atle kill OW 1.1",l stetcllteiil eel scheme' Stint:WWII lilkiY,1:1111Ilillir elect's beet (Matte'

SlitfiCe tee e \leleve All eileelltriel

upon tyre of ("AMU statement aiinvottaiii femme id the

SenftlICe. i lie feet Nell(011 ' !Milt oil ,ieeial NUS Of %14.'eCli CO11110010 USIA ill

InipelAtik`i.' Sent lit' .'s ' .tiltetss the leAll Ain't` A Selitellee ill a which

lil;ike's +ellr,tlltlt' sense 111 I untie Ili this Ieee md.al, Vell)S Ohli`CtS (OXIlICSSiOnS) caul

he lealiAllrril III the iciest Convenient lee the 'Het eit affecting the meaning of the sentence.

thus a sentence such

1 to I(on I int- 10,col .reek

14o t i l t 1 t t e4,1t.t1 Clit' ine 11 it s litten

Set C X on I Inet 0. col

IU

www.manaraa.com

just t s uild li ivi. tilL' 51111 ljijLlt L'li I ituc.iuiuiuj' uI .0 ii IlliLuli IiSI' I Vt'! ui'itluuii t itli lit! ills. I IlL' 115(1 caut l(l(l

uic' Vu}ls, itIY&',li, 'u'j sutituis, ,j(iI .iisii tljl'l,utiius. 5¼ illii Iiuilt,Ltilt It, ,tiIjCiliVUS lii Ijlj)tlLtuuiL'. liv Idlituig

jlrti.ellultus s¼luui_:Iu liii jli uili'ult iii' ulit,',iuuiuiit I tiii''i' s ulis .ttitl 'Iuuut,' i'L'jltII1IL' 'lliuiuuti;i!llluiS it veil's uuid

jiiiu,us_'s. lii tli' (.\\1I1 ullljlIl'llleult,lticill. tl'llllu!I.lI ii,uttii iii' tItjtt'tlliL'itt 11(1 itt j1C(Il,tIliui.'(l

s it 11111 t hiS t lL iitt till tilt 1' iii j'uht' ii! iii /,u u iii ii', It' its ii' I I) Ii ii tiii iiit I
,ititl j)tiiVl(l! uig

liiyithv ri.uiiuhic I () sl.ut'lll'ulI, It is liijii'i liii this !'tjit' it t.ICIhli'i IllS 11111_I .1 W(ltk,llth(' sVItuttVuu Ru the

tiL'iiI Itt uiithituitj' jt',itl.uhiii' lt't.itii, iii liii tu,u'cs ¼ lIt ii titlist lit' tu tied hi lilt'Ct the utceti's pt jurtucniur

i'tjlulj)rilt'ult -

I'ithtiit's IuItI 111111 lit, tillS iku he ,llied ilsitli' iii iituitii.tl j'iuiltlet:'u li'sts Nv iestt,ietutlitt, ;lte

'ii thi si/il liii' ilijitis it'tlluuit'l uS ttllltittui' Ill ttilt'i lit ,ihlttss lijtjtilut tit luiuitiltV USC! ii'Iiuui'tl

u u"iuit jtru,utius t''tiit'i liv the iusu it' tii'.ut'd is.lillletuvuis vi vie (pretis, pIstt'ix) (it

ts'.,i iiuiti) ij!t'i,l!ltiS iii! jlllttliti, .i V.illlt' 11t.I1lL ill 111¼ Lllllti'\i ill 'tiliLil .1 'itiiljtlitui)i' ix jut('Ssuiiti is

.liiii,'.t'ti liii' ('5 tlttillll itt 5('ilIt'lltl' lilt ,tttivlttl1Il ill tilt, jitllL('iliui' iii tii'Iiuiitiliii Ir tile Viii) itt liii'

si'llttui' 11111 t'\CillR'S is i'ttiit'iiti ,ls ills uuiiriiu.tj ltuiiCiitllt'

I lii: tlliflllli ti ,tS'itlilllillt is tIlls tllljl,'lll'lltCii '111CC it ii:us it''l itetiiiCtI tit iliCilulie iutci:ihs cit lut''

tsjtt' \illtutlilul.lIlS tie liSt'l ifllV expiRutis ''itc',tt iL'tS¼eCli Si/C iiiiijiitthtle t\jics hu ustuuip'' an

is wititti tsp' I ills iisiiiU u.n lUll itjli'iiit'llt, siiilli'tilli, tCtt.'it,uiliV IICCCSS11V iljteLitu(iti.

lIt ti. it' le j ii S UI di_ It I ui lii I \ I II ti ri till tit Iii jdt Ill Lilt ti 551 III I tullIll ii lye t Iii',id - 1 iii,' I isiii Ii ti

e\1h1''.1tl P1'I1C' lsjliIClt itut it sitti utiist tie iee'suuuieil it the jiliii'r:llll is IIltiVL'li lii 1 ditlereut

I .i'.1It lilt jii'Itll'tlt.itllll

I lie inn i t N\\1I is III .tliiittiit it tiu.ile ((-UI 11'id :ullvsss.0 liuuliitlut tlt,'itillCtlt ut this

t1ltt;t ttiiiii tilt' I.tll'u.ie' \ s.\\th titli s(ttiuul .1 ti'iiiii it j'itullui'tui list is itiiliej)tiluhiv udt'ittut,ii ttii

"s \s1h vltl.11'il' III .1 litllit.li I.tt:u .iic.i liii llt'ttll,li ,i',',ii'ltitli'ujt iijli'i,ltiii is ui,tiit' tu,lIt';iui'ttt hieu NN1i

i,Ii'ultttiels lit' il''ti .ltitt' iii' .l'.slullijilullt Is .tIS(.t\t'. tii,iit that tiit' u'tt'lt'ult iii iii diii -'I is ,uIss,'. ititciidti

5tllCll lii IlL'lltutR'l I' liii, 111111"' ihtl'i"i'' sjll'.11It'ii I hti ti:uuiR' iR't'ii iii! h. ii'tt'Ieicnc'd i'Xj)lii'lti\ ,ts ill

h'(';I 5ui ,uultiutitiui,it iriss jilt 1 is ululjli'ull'IltetI 'stilt tilt,' liittIlluul 'S '/ uuiaise X 11111111 (il

5511,11 5 is 'ttiultiit1' ti lu this llilllili'l i "'\1h jlIliillt't('i Iii .1 Plihi1'11111(' I' tit.',it('kl i'\iL_tit iS 1

.1" 1 '54t'lI it'll ititiii 'itiiu,it't' liiItt ill.' (ISttiIfli(iiIS .111111 t'd SVuIiiitl 1 j)tii1tliii
iii IS It \I\i itp'u,lutlr ssiuteii ,uhivi:utu's I;ut,l lii lii lila vuth i liti'tiiiit,'

Ii! i' sjti Ill hut' tti it1' liii' till It' it tilt' jt iiltt'i it, it I liii it is it Ii ii,tt t'il

II liii jilt' lllt'iits t 11111 jI It' till Ii' Ii's, titi t iii il tci list iit t\ iin''ssit ills s'. it it,'1 I it'ul iii L'S tIlL' si/t' ill

lit ti'i,ilii t itt1' .11111 ui1 st , ttlltjllit,lt iii'. It itt' lilt ttililiit'il iii ti tiuust:uuif tuiitiihi'utttitts. lint, ii.is iuidtIt,'iu

lll'ttL'Iit', ti iit.it ittuist,iutts 'lii it is '_' 1'' lY s, ittl lli,itt iii' stitt'ii it,lii,itt'i\ it till jiliL' tItlit' VL't Ijtjhi',ll

ill t.iituli.ti llltt.ltlltl It till' lls'i It d'st' :diisvs I' \(KI () eiitlst:litl i'iiutijitittd L'xilrL'ssI(iils tit,e'd lvi lititt,Ihl/,l-

tlttis Iii it' tiki'il it tlillljllIt' Itlilt', ilttis .l"'tlltiiiltl 't'tli'i.itltiil Ill tiit' iiitht's ti('t,t's\,ltV tti till tltis SVill.'hl its'

ti'iu,ihis h,iui'l'i thl.lil tilt' Itsilit lii 'jil I'S',lllll Iii ti'iltt't¼ llij' ljtt'i itilis .111' lV,ili;lh'I(' ill I'L'iit'i,li ii'tvt't'ii thti'

liii t\jli's itt

.'\litiltiliti ,'\iltjttiiiil, .iiittii titit, 11,11 Il'isultti. iilt1't''l duisittit, ilitt't't'i li'lll:litttlCt. ('\pulit('iitl.itjliui. ttiti

lilt tilt' iii' 11'titti Itt ((tilt I"i It (I t't 11111 'sJlirshItII itit'u,iuids uud tctiiuuiuutj'
5.. Ihi(,II.iiti'l \IIthht.l'sillts

I'i'li,li I 1111111, illli'l',i' titli, iltti'li'ltil', ((1111 sititts ill thit' i'tt ,iiutI uij',iii du'tuiii svuiii /t'ici ji,ith .tuucl

il i huh1 I II iS till IllS, .1 lit1 hit 55151' hillljth'll tilt ut \Vihlds t hs'st' ii it' I uu'ti liii st ecu

I"Ih(h t{S .iuid jilihlul' iii iNIht,I I Lt'',lltt

St I lint uilt'tstCii'it, ilttllt'tli'. luLl ihiiljii'ihti'ilt ,IlIt'st' lit' tit'hiii'tl hit't'tS'('('tl i'iiiltpituhiii.' Sets.

'SilItil' I-till .iti'ul,itiillt 11111 hills stilt It itt '(It'll) I IItN(iipi't.iutuIs .itith hu'tssccti I ItIl"(' inil

1 I I.\I ijt'u.iiii'

It'l.itlll.il I jii.uiits .iiiti illt'jliihtt't li't',t.''it lillijll(tltii' ts jii's ,iitil iei,itlhill,li tip'iitlils lielt,vc'eli j11is'tiI

lii'',! it, jlt.', .1111 'ii tili'lllill'lSilIj i'uiilitt'l lti,'iltlt5 Iit'ttt it'll N.\uIl' uiji'itiuihs, it stell us ultitilliii

t'jit.tlttt, itt'i(St'i'll ihi'tt

ii)

www.manaraa.com

Conversions: Upon assignment between all reasonable combinations of basic types.

User defined: Any operators definable between any kind of operands if the relationship is definable using
the above operatorS upon the components of the user defined types.

Data Dee larations

All data accessed in CAMIL must he named and typed. These declarations fall into fourbasic classes:
TYPE, CONSTANT, VARIABLE, and NAME.

A TYPE declaration is merely a convenient way of associating a complicated data description with an
identifier So that the identifier may be substituted for the more complieSted definition without typo-
graphical error. Either a TYPE identifier -or an explicit data description' may be used whenever a "typespec"
is indicated by the CAM IL grammar. A typespec must he associated with any date used by the program,
and the compijer will check tc insure that only semantically meaningful operations are attempted between
data items aceording Co their type.

A CONSTANT declaration associates an identifier with a typespec and with an initiaded, unchanging
value. Constant identifiers niay he used anywhere in place of the value with which they arc associated, but
their value cannot he changed during the execution of the program. Their permanent, unchanging value
must he stated in their declaration.

A VARIABLE declaration also associates an identifier with a typespec and a storage allocation which
can contain ah object of the indicated type. An initial value.may be indicated for the variable as part of the
declaration. The time of allocation of the storage is the time at which the variable is initialized, thuslhe
lollowing initia,laton hines holdlor the indicated class of variables:

SD A RFD When the first program referring to the shared Module is loaded

PRIVATE Each time :r new user begins to execute the program (even though someone else may already
he executing the same p(Ogram)

PROCEDURE At each activation of the procedure

SEGMENT Whenever the segment is activated _

If no initial value is specified for a variable, the associated storage will be cleared the time
of li:tiVatiOn.

A NAME declaration issuer ate air identifier with a typespec and a pointer which can only point to an
object of the indicated type. An occurrence of a name variable in any context causes the name to he
derefereneed to the corresponding object. Storage is allocated for the pointer when a declaration is

encountered, but not for an object of the indicated type (these are created dynamically) and no initial
values arc alloWed for names. Nallle variables are initialized' to NIL references at the times indicated above,
tor variables.

I)eclaratfrrir syntax is independent of the type of module 111 which the declaration occurs and is
indicated in the CAM II, syntax diagrams included in the Appendix. The following examples were excerpted
from the ('AMIL progranteditor and are offered vithout semantic explanation at (hr S time as samples of
data declarations.

Examples

CONSTANT
INTEG.IR buffer_slie- 55, maxmorfre-237;
ARRAY (01101 OF STRING(111 moritype*-,
(*Gomment-i*,'Shared Oata°,6Priv3te Data6,*Proceduresey
ISeqments1,1Job Cads°,4Main Eilock't'Input Datn't
°Text°,6.Macros°,'Fjnctiors');

1_2

www.manaraa.com

TyPE
Oltimf .ersize.BuFFERRANGE:
Olmaxmods MOORANGE:-
0163IOCHARB;
012+15-1 DISKACDREtSt
012114-1_ JULIANTYPE:
0 r2t16-1 ADORRANGE:
PACKED ARRAYCIO1 OF --MAR'S PACKEDNA-E1

PACKED RECORD
BEGIN
PACKEDNAME modulenameL
OISKAODRESS r-totlbjtiv:
P.1.00RANGE headingend;
JULIANTYPE updtdate;
11240 ceitnumber:
ADORRANGE sresizetobisizet _e,baseaddrfo n_ddr

END MDRECORD;

VARIABLE
INTEGER
grld start t grld_-

LOGICAL
Lnserqtrecomollet
Inspect-pnlyTRUE;

PACKED ARRAY[32] OF 0

nbr_grid

screeni

NAME
'MORECDRD curren odule_ rectorY;

Data Definitions

lnesV

2T * 0) ;

Language Tokens

The tokens from which a prograkn can be composed fall into traditional categories. These basic
elements are: reserved words, identifiers, literals, and punctuation.

Reserved itbrds

The following list of upper case spelled reserved identifiers are identified by the CAMIL compiler as
built-in delimiter tokens in the language. They cannot be redefined by the author, thus they will always

have the same meaning in any CAMIL program. The role of these words is to clarify the structure of the
program to the compiler and to the original and subsequent authors of the program. The list is presented at
this time for reference. The words are reserved in UPPER CASE only, but some of them also appear in the

language as predefined identifiers in lower case.

IF DO OF BY

TO END FOR SET

OWN THEN ELSE CASE

FROM WITH GOTO TYPE

NAME VERB PREP FILE

BEGIN ARRAY WHILE UNTIL

JUDGE REPEAT PACKED RECORD

RETURN SWAPPED VARIABLE CONSTANT

OPTIONAL PROCEDUR ,

13

www.manaraa.com

Identifiers

An identifier is defined as a group of upper or lower case letters, digits, or underscores. The first
chlracter must be an upper or lower case letter. The compiler only attaches significance to the first 10 of
these characters and ignores any additional ones. An identifier must appear on a single line, i.e., an end of
line signals an end of identifier to the compiler. Identifiers are used to name data items, modulet,
locations (labels) within-modules.

Punctuation

Punctuations sire used in CAM IL as separators for the purpose of program clarity and as operators or

grouping symbols'. The following general uses are descried for punctuations:

Braces encloSing comments ignored by compiler
Parenthese used to group elements cof expresSions
Square Or atketS used to encl ose incleit express oils-
and 11 feral sets
Semicolon used to separate statements
Colon used to visually separate items such as
labels and statements, or to'clenote an optional
data item in certain sentences

'Shorthand-versions of the reserved words
°*GIN° and *END*-0 ,

These characters display,
on the terminal screen as corners ' and L

and are automatically Connected by the prograM
editor witn a vertical line which serves to:
emphasize the nesting structure of the program
while encouraging neatly paired indentafion

Assignment operators
Zodoll'oc>wwf Logical operators

fl

rl

Math operators
Set operators
String operators
Quotes used to delimit screen messages
Quotes used to delimit character strings
Operator used to denote reference to
f lel ds of records

Synonymous with the constant 3.141592654.
An operator used in mul five! ued expressions
denote that a particular value is to be
repeated within the expression
Qecimal ooint used in expression of decimal
fraction

Used to i denti fy a hexadecimal constant
Used to Identify an octal constant
Several other Pieces of punctuation commonly
used in Engl ishf but not assigned any soeci
syntactic meaning in the ;TAMIL I anguage

Detailed uses of punctuations are shown in the 7A _IL syntax charts included in the appendix.

14

www.manaraa.com

Lfterals ----

The'CAMIL language provides for the representation ofliterals, i.e., self-defining constants of all basic

data types, supported by the language. The types and formats of these items are:

LOGICAL' TRUE FALSE
INTEGLRI, Idelddddd (digits .0s.9

adddddddd (octal digits O,.7}
OldddAdddd (hexadecimal digits p.. otle.F)

NUMBER'. .ddOddeldd
dddedddddd
ddddddd,

CHAR: .c.-

.STRING' 'eccccccc'
POINTER: NIL'
WcWSTRINGS:

"The rain in Spain falls
mainly on t.

ain"

(digits 0..9 ax of 10 sig dim

to single Character in qyotes)
.(D "to 120 characters in quotes)
(means an undefined referei

Used to display data terminAit

The above .constants are limited in accuracy corresponding to the accuracy of the wt3 compufer ny

the following rules!

1. No integer may be defined with a precision of information denoting more than 60 bits of binary data.
The compiler limits octal constants to 20 digits and right justifies fewer than 20 digits in a field of
zeroes. The compiler limits hex constants to 15 digits and right justifies fewer than 15 digits in a field

of zeroes. The compiler limits decimal integersjo the largest value which will fit within 45 bits of
information since this is -the precision if the AIS computer multiplier; the value of this largest integer

is 2T45-1.

2. No number may be defined with more than 10 digits of decimal precision. While this is Ids than the
AIS computer provides, it is consistent with the accuracy obtainable after repeated arithmetic
operations of functions. No number expression may appear as'a constant or be computed to exceed
approximately 10.1295:Numbers may be expressed in scientific notation as constant expressions in
the formats used to describe expressions as explained in later sections,e.g., 25.4x10? 15

Wordstrings are two-dimensional chunks of character information used to place information on the
display screen of an AIS- terminal. Any characters except the double quote " may be used in the
wordstring. If a wordstring is broken across more than one line, the first word of the next line will be
left justified against the left margin in effect for the terminal when the message is written (leading
blanks are ignored ill lines of a wordstring). There is no specific limit to the size of a wordstring.

CAMIL supports data types of the above literals through operators and through facilities for
compounding the above types into aggregates or indexable groups. On simple scalar types it also allows the
limitation of attention to subranges of these types. The operations between these types will be explained in
the section on expressions; the groUping mechanisms will now be-explained,

Record Grouping

CAMIL alloWs certain values to be grouped together and optionally compressed for minimum storage
utilization. This grouping of heterogeneous item types is called a record or packed record. The definition of
a record must inlcude names for all of the fields within the record and indicate the type of each field.
Variations within a portion of a record are allowed when the contents of the record might be used to
represent more than one'kind of thing through a type of field called a variant. A variant selector field is
associated with a variant field to designate which alternative is in effect at any time. The record definition is
often associated with a type identifier in a type declaration to avoid the possibility of erroneously repeating
the definition and to save space within compiler tables-. The syntax chart is shown in the appendix, but an
example is included here to clarify the intent of the record declaration.

1
15

www.manaraa.com

Example:
PACKED -RECORD

BEGIN :

p;9999999-99 ssan;
0:9999 sqvadron_numb student_dorlt studefit_room:
CABIA1C,A2DISSGT.TSGTOSGT1 stuJent.ank;
151-65 'student_age;
(MALE,FEMALEI student_sexl
'CASE LOGICAL transient

BEGIJ4
TRUE 01999 next_basA; DATE_TYPE out_process_date';
FALSEIrSTRINGI301 permement_or-ganigatian74

END;
END STUDENL.RECORD

Array Grouping

CAMIL also allows homogeneous ty pes of data to be grouped into an indexable array structure. The
array may also be compressed for .ranimum storage utilization by including the,wOrd PACKFDin the array
definition. An array definition must include the range of indexes Vowed for each dimedsion of the array
and must also designate the type of elements which are being grOuped together. The range is denoted by
including a subrange of the indexing type in the definition or by denoting the largest index and allowing the
compiler to generate a default minimum index- of "1". Syntax fdr the definition is included in the
appendix, and several examples are included clow:

Examples:

ARRAYEI.01 OF INTEGER;
PACKED ARRAY1101201 OP Nu BERI
PACXED'ARRAY(ItiOt 1:159 11201 :0F LO:-
PACKED ARRAY(151OF

PACKED ARRA Y(4) OF
PACKEE RECORD 'INTEGER .41.11.1BE

File Juping

A fil- may be declared in a CAMIL program in order to gain access to data in the CAMilL data base.
The purpose of the file definition is to associate some specific data file by name with a variable in the
program which is_capable of holding an element of the file. The file identifier thus defined is regarded by
CAMIL as both the name of the variable and the name used to refer to the data base file during some file
operation. The file declaration must name-the data base file, the type of item which the program considers
to be in the file, and the program name of the variable which contains a record from the file. References to
the data contained within the file variable are obtained by simply mentioning the name of the file variable
as explained in the description of the file statement. The syntax for the file definition is included in the
appendix but an example is indicated below.

Example:

FILE 'studentd ta° OF STUDENT_RECORD

Expressions

The CAMIL expression mechanism provides for all of the normal types of expressions and operators
found in most high-level languages, such as PASCAL, but also provides many extended features which other

languages do not have. Sonic of the extended features include special set operators, multi-element
expressions (composed expressions), a type casting mechanism, and user defined operators.

16

www.manaraa.com

The lowest level of precedence encompasses the relational operators "<", ">",
"s", "ez!. The Meanings of the first six.' operators are similar to other programming languages The
operator is used in two different ways withip,CAMIL. The most common use is to determiile whether two
pointers have the same referent (i.e., the addre'Ves denoted by the pointers are equal). The other use,.while
similar in appearance, is to determine Whether an optional record field or procedure parameter is present in
a record or procedure call. This is tested by comkaring the name of the paraeter to a NIL pointer. The
form of this test is "parmnaine = NIL".afid it returns a true value when the parameter does not exist. The
"e" operator is the contained in" operator used to test set membership. The test "5 e s" would be true if S
is a member of the kct s.

The 'next highest precedence level contains the "+" and " -" prefix operators and also the "+",
"v", "u", "O'", 1r, in ix operators. The " * "' "and will not be discussed,
,sin scs their Meaning should he clear. The "v" operator is the local "or" operator. This operator has two

-1Trgical operands and re-turns a logical result, which is the inclusive-or oldie operands. The "u" operator is
the set union operator. This operator computes the union of two set operands. The exclusive-or operator
"P'': is also a set operator 'which computes the,loOcal difference of two operands. The operators "i

are used to shift integer operands. The and,"--,---÷" operators arc left and right end
off shifts, respectively, with zero padding, The "=-, t" is a ri,ght circular shift ,..and "1-4' is a left circular
shift. "Il" 's the string concatenation operator. This operator merges two string operands producing a
single string as a result.

At the next precedence level, the -x", "/", "A", operators are found. The "x" and "f'
are the normal multiply and divide operators, "-'," and "/7" are integer divide and remainder operators. The
local "and" operator is "A", and "n" is the set intersection operator

The next precedence level contains the "T" operator and user defined postfix and infix operators.
The "t" operator is the power operator, which can have integer or number operands. To express 2 yr the
nit' power "2 t n" would he used. The user defined post fix and infix operators which are referenced by an
identifier are also found at this precedence level. An example of this type of operator is the postfix "sec"
operator, which looks like "5 sec" when used.

The highest precedence level includes the operators "1- and "N" and.alSo parenthesized expressions,
cast expressions, user defined prefix operators, and composed expressions'', The "-I" operator is the loOcal
"not" operator, and "N" is the set complement operator. Parenthesized expressions have the standard
meaning that the expression inside the parenthesis is evaluated prior to using the entire parenthesized
expression as a result, Cast expressions allow one type of expression to be considered (or cast) as another
type of expression by placing a "type id :" in front of it. This is a very useful feature to have in a typed_
language such as CAM IL because there arc many times it is 'desirable to override the typing conventions of
the language (especially in system programs). A simple example (assume c to be of type character)
"INTEGER c" alloWs the intern-al value of c to he used as an integer. Records and arrays can also he type
cast, allowing multi-access methods to the same storage area. User defined prefix operators which are
recognized by identifiers, such as "lin and "col", are also at t his precedence level.

Composed expressions are also at the highest precedence level. When a composed expression is
encountered, the composing routine is passed the type of t he object to he cornposed so that each element
in the expression list can he added to the stack in the proper location. The resulting multi-element item in
the stalk can then be used as the abject of a verb, the parameter of a procedure calLas a value to store into
some variable, or as some value which is part of another- composed expression. Because the type of the
object being composed is knowngull syntactic and semantic error checking occurs as the expression is
scanned. The following is an example of a simple composed expression which assigns a value,to the write
cursor AT, which is a record with two integer fields "AT 4----(5,8)", Values can he repeated in a composed
expression by using the "*" repeat operator, This is especially useful when an array and many of
the elements are to live the same values. For example, it a. is a 10-element array of integers, the following
will initialize the first element to I, the second element to 5, the last element to H4, and the rest of the
elements to IS "a (I ,5,7* 5,84);'

17

www.manaraa.com

`the extensible features of the OWL language allow a use& to declare prefixinfix, and postlix

operators. There are two methods available to the user for declaring operators. Onc-Mothod is to declare an

operator which is to be identified in the program by an identifier (the "line ". "col', and "sec" operators

are defined in this way). When an operator is declared in this manner, the operator takes on a precedence

depending on whether it is a prefix, postfix, or infix operator, The prefix operators "line" and"col" are in

the highest precedence level while "see", a postlix operator, is at the neItecedence level. The other type

of operator declaratio9 is one in which an existing operator-is extended to new operand types. The user

extended operator acquires the precedence of the'operator symbol it is extending. A familiar example is the

extension of the common arithmetic operators to include complex operand types. The. "+" operator will he

extended in the following example. The definition of the type COMPLEX is:

R.ECORO
3EGIN
NuM3ER real,imaginary
N

OMPLEX;

The following is a procedure heading which efines addition (using the symbol) two complex numbers:

CO PLO((COMPL.iX al (COMPLEX 0);)-

Assuming the name of the [nodule is plus, the procedure body for the above procedure heading is:

L-

oiJs,rea G. area(;

oluspimaginary a a. imaginary b,imaginarY;

ENO;
Whenever two complex_ numbers are no he added'in Me program, the + operator will invoke the

defining operator procedure. If a.b,c are all declared as complex numbers, then die statement "c 4 a + (h +

c) + b" would he possible. An entire set of-such operators can he defined over complex numberand stored

in a library, which a user could reference whenever he wished to perform computations usifig complex

numbers. A new number system could also easily he implemented by extending existing operators to

operandS in the new system. The extensibility winch CAMIL offers is quite adequate for many different

and interesting applications.

Constant 'expressions, including packed composed expression's, are evaluated at compile time and ilw

resulting values are stiked in the program. Tlie use of constant expressions reduces the program object site

because the expression is not computed at run time. This feature also allows the prograr Mier to change

Storage allocations throughout a program by changing a few simple constants used i other constant

expressions. -Fhis enhances the maintainability of programs by allowing objects, such as t files, arrays, and

lists to be rapidly and uniformly muddied throughout a program,

Executable Statements

('AMID hrovidcs a large gnu itd "t permanently defined statement types for the construction of

algorithms. Most of these statements ;ire defined with reserved words as delimiters and several include one

it more other imbedded state[Vnts. ts,lav also represent verbatim equivalents of standard statements front

ALGOL and PASCAL as winilal be expcted. Several others represent generality extensions of existing

types of statements, and several are soinevAtat new as far as we know.

Old Favorites

mipoutid St 700 Tar

CANIll. provides for the grouping of several statements to produce one sing! ipparenl statement

through the familiar !yin of delimiters: It also provides single charade! equivalents of these

IN

www.manaraa.com

through two characters "r--" and V. These often reduce program text size making it possible to place
more program on a display screen by allowing several statements to he placed on a single line. CAMIL also
frequently uses BEGIN END pairs as grouping elements in data declarations and in CASE and JUDGF

merits. All BEGUN END pairs are fully matched, unlike in PASCAL where END sometimes appeals
without a corresponding BEGIN.

Labeled Statement

CAMIL allows identifier labels to precede statements for purposes ut branching to the statement with
a GOTO statement. Labels need not be declared and may be howard referenced within a module. The
scope of definition of a label is the module in which it appears. The name of any segment type module is
also considered to he a lab id to which control tnay be transferred by a GOTO statement.

RETURN Statement

A RETURN statement, meaningful only in a procedure type module, is provided and is equivalent tei
a GOTO to a label following the last executable statement in the module.

IF-THEN-ELSE Slat orient

A traditional branching statement is provided with the usual meaning of ext...cuttiag the statement
following IN, if the expression lollowing IF is evaluated true, and eNeenting the statement following
ELSE (if present) if the expression follOW-Ing II- is take.

GOT() Statemint

Tile familiar but wisely GOB itement is also provided or use in escaping to segment type
modules or tor tr[insterring to local labels within a module. El-mister is allowed to any point within a
1110(1111e which can 10:thCICd, so the (TOT() may hi., hilly exploited and abused.

107-1/ Staiomenf

The PASCAL WIIII st.itetncnt Iiis also been implemented to [Mow local deretereneing of wood
names. The effect is lei make any field of the dereferenced record usanle as a simple identifier within the
statement to which the WI prefix IS attached, IllSt is ni_l'ASCAI A Van:MOH which allows a tile record
to he [cad up, derelereneed, updated, and [enlaced is also implemented and explained in a later section.

The other statements in CAMII have (-idol !wen I I ILeve.opet_. or originated, and they will he explained

more fully in the liillownw sections.

Modified or Intvroved Statement Forms

AYsr.elitnetrt StatettnR1
1_

The assignment statement is present m its familiar forgo for lett assignment. Compaied to PASCAI ,
this st itement has been extended by extending the typeset ex sessions which me allowed in the language.
Since CAMIL allows the user to structure multi-element daia types through ARRAY ink) RI('ORI)
declarations, it also allows the user to compose expressions Iiii this type of operand. lie

expression can he ;Issigned as a value to variable of the lecold (it T;!) (Vile, I X:1111pleS would

be

PACKED ARRAY(.1)1010F INTEGER i

(3 t 14, 5, 27, 1+6, 9, 1(:41. 22)

RECORD
9EGIN
INTEGER h.
NUMBER m,n,
CHAR c

ENO "ec
reco- (29. 5, 40.H 10,27, "we)

let

www.manaraa.com

(AMII iIs, j,i iividcs a hitili ii 1 .iiliiielit %iiUii iiinw\ N A1I v.itiiiiiu (1' tiitei) ii si'tleii the

vIiI1e t iither iiiiter, File ijilillial filkII1ITIC iii ii'tt i\'i'TlI1iCTit iii (Mii IS iitiV th stiiltyC 5'iiti'd
syith tue ngiit ii1,eittitj tilt' th' \t(iijrC ,'SiiCiitCi! s.itii tile iir 'eiaiiti iiiini! vlrI,d'iI's siii hive theIr

iiliiress ;icsigricd It ilTie tulle uil(i till 1-tn1'iier s Ii ceiler_Itu eii&ie lii ripS tili' lr1iuircd .uiiinhlt t

Sturage itsuig these LTIUSVTI kIICSSCS. it either iii i,itii rit tile s,iriihles yte NA\1t' tv pe vnjhies, ti uMic's

ul the stiirage t he cripict %viii lie t:iken hum time ilululier Icillise .ii1mi-ss us ulil .IeUIT1III1L timime. Ilius

riturtital kit Jssi!nmm1emir a1Sis U1ViuiSC' fhC Rll IR1\ 1 '1 IiIC umi\ejtciJ k'iitIlicr ii CtlfeSlIuull. The

jdi1ress held hy j pliimter fliuv eiipleii iTitil .1 rUth Ii i1)lulflti'r ItSilhi' a n14it irmiiss '5' lt -' i

sitli tile jssiieiteci mleiml}flg "mhI_ie piuiilt hi tlii' SIhtli' .uddrcss Ill stimlee thu is illhifli tUg lii. 'inCe IC

:uttrthutc if hcjne NA1 I h'ilN)g.s Ri ,ffl jdCtlttttCr r.ithiim Ilmuit (ii 1 tV;'e .15 lIt IiAS(.\l plitiltets ,iii;j''
ricrctereiice ti) iii t:ttiicr (li;lil Ru iitiiet iuuIltris, thus the tip Jm11'w tued in PA('Al t11 Lk'hlutI 5¼ hietlier a

puijilter t% lNmig dr14itett'mlCt'LI tS hut TICCIIIli Ilie i1ii''t 11.111 iii liii' LiCiITllttluhl titut it in ikustlie nieituiti

iii the lilt asstgtirijeni ullitlhltt :uLi1iSc Ci,ttStints, v,inihit's, intl mtuntes ss hue smut ,ulllwlilI p iniieu lii he tiseii

in tile nilure iuiiritiul I,JSC5 mu ''hiuch they mulL's! h' dIll! ssimh IS IulthuI''e' Ill IC Cliplili 'ue eel 'tiut the

rc.stuitiiuc sviut_ux stn i Ci'llLiSC flU tire s ilm.l ill PAS(A I I' I' sitiii lit l I Ilissimlil C s;irtipic

-
I PSCAL2

Value cO1S X * Y?

Potntr cOPY! X t i

AriILl
Value c3OY X '

Po1rttr coPy: -i Y

the L1.tt1ll1l51tt 'ICIlltttlS tilt' ii'tIiti'.inl .1 h' '\jtti'Shltt ltl'ClrthiL thrill' lli:'itClte i. lii the

ttiiIiii nip trini si p uilittir lelL'ri'll ss lien' liii iiililtu'rs ,ime ieiiis wiiiuuu lii

C ALt 'p I ci y c t ' t I I cit I cit yi t , I, : cis

i-Jt itent. f'tfLidt1citvoet ;L1.pZ ic z hi t

.- (d,bkt.):

tie PASt i Sl,llCltlenl' Ill lht ,di' t'\,uinphi's ,luelttlitiil'il the '.itlii. "nit.,i'. tii" (A. lI .1 i'lhhiiits

ht'neitii titetit hut CC IIII lhtuItc' It tI IllS ',tUu' 5111k 11111' IrtitlIli illUhiCIt' e euth iii ui' nuI ',iiulu' iiri

lii the Ci1htt1 l5i' \l 1551, Ii 11.111 II I h' ('A\l II ,ls'lt'lthIIl'ltl tIlt liii'! PrlTits ill! the ib,'siiiiiihil\ ill

,tsuitiii s,iht's till iii l'iiltil'lil il,iI,u ulIi1. liii' 'i.illlph is 1,11,111 tlini.l the ('\MiI iiittuIitht'l.

/ hUh lit ii iu ,Vt;li' 't7h/ (/1 1)1 . 1,/ft Ui

lie (,\MU i-iitti,i't iriSluhe, iii Iii' SiIijktll it i_el it u'\s nht Ci'ltIilhuliiS siitii'bt tlL,V iiiiilt

l'iS Ui_tIll illiSiS itil;it1 th esitIlliulul 'it I (Wilt t.ii'iitti I hue .iuiliium il .1 (MIIi ph 'ei.itii tietlielili'
SIlShll', III Pl1ld lit il' ''Ii uiri,I liii' 'IS, 'It 'seriIlili' hi t t11't,illI tij r.i'.i' itt' ts.itil I, Lh_uut' his lillIth.

lii iui L hilt it ,i %Ilridt 1111 Ii,' lii uimIt',I 111111 tt.iih'i'ilils It I' ,1,'k it ' .I'iueis 'i'uti tutu' lIitIi' ttt

it th1' ii i,iiiu iiith'itt III cIt' t it' Ii',',t'. I, j,itdi slriuttjit' itti' Is it it, I'S '1111 m' tli'st uluil Ii iittk

uiti'ttt li_i mimi1'thui' hut1" uS Ill1 iii, II It till ihti I, lt,1ilt'h Iii, i hituuls ittlC 5sti'tlts ufilS tilt Iit liti_t' umh

i'ilhtllli,tlltl itt,'uh' it uuttmii kes l'\(.11' (\%llt lhliVliil'S hit. tiliiuiii'it Shlptiiilt lit -1 'tI iii 11, t1umltlili isis'.

iii ihe 11511 kes tu.tith ,itlil 5,511,11 ISililul ki'5 l'ill ii , ill hit' iti'ssi'il ii liii' ss ml'ltu \Sltu'li 'uuilli'

'IllihIluull till' lIlt lilt 111,15 15 1,11 Ii lull i"', ii.i' iii 111111

il1 WI ill11 iiç'tiitl '5.1 sit Ill thRIll lllIl. uuiuielm Ii, Is isuiimttj' Ii uitill's, ii .1 uluil' ill ihe piuI'i;iili ii himu

sssite lii pit iil'\' till l.,ullliltllill' It ,uut' ill liii' iutl'..itu't.i I iittulltliutl I' t'niiiilltti lii! it'ittu ill iSiti ti.

tiiii'.t,'iii'li ti' tim' ''.tlti'Jilt'mit'' Iii ssttli hI till ,ii'tiS.iti'iI I ill tiitihltliitl', I" lUll Till ,ii1it iuuultlIti' timitu'uhiei

Iii tilt' hiuiluisi_1mI1' sl,lll'tlhu'lll\ ,ilui1'tlhhlu' ,iti't lit,' II 110 sT,itittiltt liii' ,iulthul hills lCIil'tuIll' till' '' huh
liii' iiiiiihil lUll' his hlI".clilll)'. .1 ll1'" ii J%(I ,llti'ltti:ul Ii tile ui,'I.iltl lit tilt' t'\e,litlillt lull it I iti' tiiiuhi,ii rii miii'

'mit is '

it)

www.manaraa.com

IF se COnd Ions 'DO statement '

li1011S is an expicssion anil is I:AIL-rimed imiv,itet1 \Olen the II itenteni,is

cmounterod in normal tinTF.1111 c)(rcutitin segue -(c At the time it tiontial eneoutitet the 'statement'
ttillttwiiig 1)0 is not eeciite(1. 1.//y.. 11 on' it ,Ins` id the conilitions in the k-onditio,i !..et (+COW,.

SiateMelli 10110W111): 11(1 IS ,+) feu A 550111 1,11'!: kir e.1(11 ()I the ACtIVAled 1:01:ktflilTr.:,

tOlithWing example shows ho1/4 the 11 -111) staxmeni is used to ino.,1,1,A. Iit 1.1 the too. a 117111 In the
pfeV11/1Th and f 11C, .111s,AV tip ,i1JC,,,1)11

arnllle
IF (HELPfaACK, GOINGO0Whl 00
CASE SYS.FKEY
BEGIN
HELP! wrlwrite At thir. poi; you V

uest1 tis r
to the o.revlous eximple,
Fi to see how much tjme

CA syctem V riao 1 ii +Iv D re;sed)

lv anSwer the
BACK to return
or press

you have
IPft to on%wer the oueStIon" for
on tine e't, col 5;

AeKI GOT() module27;
-0INGOOWNI GOTO system_crish:

rtimeletto-45-.SYSTIMER-STATTIME;
wrIlte timele.ft on fine 10; (:,JTO redo_ou -Joni;

ENO;

Sec

roise: ST4RITI4Lf-S
on Ilhe 10, co!
"Wh.it moment
when it aoolled

redo_ stionl
accept with

etc.

TIMLq; tImefort.-4;

ve sp clflerl
rt t70mant orm";

It', 0 for tlm-1-'t

ht Nit' a allIpiC ,1)1 111 N,:on,litnm %vhicli is asst-ited ai lei the orelatni iettne-is
MI1 to 1,,IttItitit opkstAtt,,its s,,,',Inkk 111101.10

Hits :Ham tta,,loittctt t,t to (1-.111,101 own,' to modulo vitt,-1, luielit ,-Lttte

stittiotics 11111A'111 51J111N on disk Sit tliat testitcd attei the system icsimies opet.ition, .101110 t' the
ltthtltt11 1111 "111 ,`itlt ,1t .IIIV the 1`1".13111 \'"tlfinr. 1st' All',\VCI Ile cillt..11011,

frt. i0-, ,k,(ht ri,1,1 .

,,. 5111111 ,.1110(1 ,111'1 itt11tllilt +ti

11'1 +11 at tilt' 1011)st 11`1'1'111 It'Ct i it IA t live ,,ernient

l)s. %cillient. It Ow 1111 1' Iscs is pits'sseil in this situation, Ow Ill 1 I'

)11tIttit,lt m the ittocedtile huts 1.111101 'hill tile iine in the s.olietit. It the 11,ACK. kt's
m serment hut wit defined in the iiincedine inessekt \sink, the 1,vits

coilltol 1i 0.111(1 ildrIN1011C(1 11.1t1 to i itc".01'1110111 111 1111' sf 3101111111 10110,101111 1111' II() 1)1 the

[he inortain our,. .1,1nr,ted so that it col iesponiled to t,he
sLite 110 55in It the semen! 11\ 1,111 1110 1111)1.1'11111' 10.0,1 11.)1 1)1.1`11 C.1111'11.

(yerrttitmN

I do ,iitti.itt(11r, 11,1t, !en illieel.ited irito 1113 h.) illokidt, hit hie ickttiot to

(IAA (Ile tile And iti ,t1\ti te,c-the tile 11,1111e the 11,11w htiftei column* 11111 clentefit it 111e All

www.manaraa.com

tiles are declared in the program 3s a tile of a certain type of element. The' tile i dentitier is then 'a variable of

the type it the element The ('AMIL tile manager allows three basic kinds of files: indexingdirect and

variable. Die uileaMMI of these (tires will now he defined as they pertain lu CAMIE files.
s.

Indexing tiles are tiles accessed by a tile key, i.e., a piece of data which is used to discriminate

between diffetent records. in the design of time ('AMIL system, it is intended that indexing tiles will be used

as control. and directory functions and not used to store large records of data In the implementation of the

tile manager,, indexing tiles are locked into the executive control system (ECS) of the CYBER but protected

on disk w believer they are written. The result or this approach is that READ access to indexing files may

always he accoMplished without physical 1/0 delay or time slicing of the program, The cost is that records

cannot be very large without wasting a large quantity Lit IA'S.

Direct files are Ides of liNed record size acc essed by a specific record address. Records may be

hut icred (nacre than one logical record within a physical record), and new records may be written into

ciupls iceordscoutoinatically alloc.ned by the tile manager. this access method is implemented so that the

dish address it record inay he computed limn the)-ecord address, so that only one physical file

dptation is required to obtain tile desired record. Direct access addresses range from I to the number of

records which may occur in the tile.

Variable size Ides are nil pleninted so that there is no limit on the size of records other than the limit

ed in the dotinition. Also variable site riles, only a single physical access is required to obtain

the SeVice is allocated tot those records so that the Minimum number of disk sectors needed

to e1i ion the size -tit- tecord allocated. Actual record size is maintained by the file manager and

ips record update ii114711 changes the size of 4he record written results in automatic reallocation of disk

.0miniiilate the additional size. All disk space is automatically recovered when records are

d, Anil "checket of ;ivailable sectors is prevented by consolidation if adjacent sectors.

lownw variations of lour basic commands hairdle all tile operations permitted on CAW-- tiles

of a (AMU of haiji program attached to the CA MIL data base.

IAA MHO',

KE.A0 file()
RcAD file
READ file(lndex
RLAIO filefindex
WRI -FL I I le

WRITE file(index)
WkI TI 27i1

DELETE file
firotIndex]

CELLT file(ALL)
W1TH d I G E lile(Indek)

(Re et to first cord)
(Sequent i al read)

(Read particular record)
(Read variable size record)
(Sequent 1 al write)'
[write nen(Odexr-Ol or raid rec)
:write variable size record)
[Sequential delete)
(L)el e to mart leo, ar record)
(Purge contents of fife}

DO (Reserve and read denoted tile}
(record, de, e f erence fields
(RECW tv0e, replace updated)
(record, rel ease reservation?

.1 Ile index Is optional %%1111 IIie Meaning, ul seyuriiii,il access to the next iccotu ni me tile it 'II a.

(IiiiMotl. the Icuoid sve file ntllii i is oils used tor winable sized records and is automatically set to record

size is hen leading, contiols Mc size of the iccoid tieing written. The ELSE statement is optional and is

olds, executed %idle,' the tile opel.ition anuot he !icily completed. A built =iii system variable contains the

cc to it tile Cali it which Iris occulted nit ni,is be inteirogatell for use in ilecidingshow to process the error.

Any I de 'statement %%loch dot- nol who!' Itillv succosstill caused NO alteration to the lily on disk. A tile

nrav hi' IC to tic Ills(arc citd I(11 srcturnli,il 1110CeStilllgh, reading with an empty index,

www.manaraa.com

The name of a file type variable tins a dual role in (AMU,. When the file name is preceded by it file

operator, such as "RIAD'', an operation upon the disk tile associated with the Ilk rime In the file

declaration Is performed. Wit bin any other usage context,' the file name is a va Motile of fire type of data
indicated in the file declaration. if the file is a NAME ypc variable, a point et is associa led with the file
name. Like any other pointer:this pointer is the address of storage a 'local ell to contain an Object of the

type 7of the file. In this manner, a single Slick file name can be used to read into several buffers, some of

4/11011eli may be dynamically created' and roily. used locally in a procedure for e xample

The operations supported by the file manage, include, speei fie functions for each t ype of file icy; est ,

which is in turn 'dependent upon what fields arc included or omitted in the tile statement- and the Iype of
file the actionis performed upon. The user sees- a much simpler interlace, since he is only presented the
operators READ, vvitiTE, , and Plilit; E and a record -updating constnrctCO based tat the Will I
statement. The READ function only reads records into the file huller. The DELETE function deletes the
designated record front the file. -the 1111 RtiE tune lion deletes every record fr oin the file_ The WRITE
fUnetion replaces the' &signal ell record on the tile it' it is found or adds il, to the file If it is not present. A

cons Out Is provided with the syntax:

WITH FILE nytilet1,n1 xl DO <statement> ELSt (statement>

When the above construct is executeed, the designat ed it-curd is checked to insure Ihat it is not
reserved by some other program The won'd islien received ftrr this p rowan% read into t h e dile him tier, the
statement following the DO is e scented, the record is rewritten ! into disk, and t he reservation ts removed.
The reservation step ,issures that two proeranis di, not TV:111 fecoo I, imitate! ts C011i tall 5, :111(I then

rewrite it oblivious to iliefact that each has updated Ilse same record. The ELS1-, clause is executed only if
the record can tint he rese rved an d/or read. Several attempts t o reserve the record Are autom atically ins tia led
by the tile manager to eliminate the need for the prograi timer tin handle the rafNase when another program
might hit the saute record. W111 !FHA: form also accomplishes the sante I unction as Ilse noon al Will I

statement as it dereferences the designated record in the san' manner described above I or Ali

statement .

File security is per formed by the tile itianar,er. When a the is defined in the CAM!1 data base, it is
potentially available tO every C AMIE program. Access k c on loaded in the deilni lion process (an inter-
actively rim_ ('AMIL program) by allowing the tile dehloci to enable specific file manager functions for arty
CAM IL program by name. Since these names are minim!, the tile manage' can thus ;mill owe specific
programs to perhaps road a tile. but not add toil or ;Me r any records io the File. Provisions are also inade In
control batch job file secruit y by associating permitted file operations with the ('AMIL program from
which they arc submitted. Fly configuring the syst cm so that requests can fitly come through t he ('AMII.
system and its associated peripheral processor ion tine, the CAM! I data link! is f olly piotected t nun direct
invasion, and access must conic through the file security process of the tilt manager. 'Fite file edit or cart also
define default security entries to allow tiles to be.accesse,t1 _by programs withou 1 specific security access 1 it

so desires.

!feral"'

The CAMIL iterative ;denten t combines in a single-statement all of the functions of 11 three

PASCAL/ALGOL iterative statetiterits. Tile statement is 'iseil on rlic IHIowing reserved words, all e t wtiieli

are optional:

FOR Followed by a Varid ble which isinilialiiedwhell I p i s st ar t id Mere in en led by the value

of the IIY ex pression as the loop repeats

FROM If present. denotes the start icig value of t he Ft variable, Jet au I ts to I

TO If present, denotes't he stopping value beyond winch the FOR variable will nor ci inino
to the largest integer

Li`r` If present. denotes -the increment Iu he adtleel In , I- We eanaide

defaults to I

:11 time (hough l'ic Imp;

www.manaraa.com

REM!: AT If present, denotes the maxlinuin number of titrlett the loop will iepeat, regardless f oth

control mechanisms; defaults to a large implementation dependent nu tither

LINT, L If pewit, It followed by a loocal e spression which v tihe evaluated at the el ()leach I p and

Which will terminate the loop if the value Is TRUE'; d tits to I ALS!?

WIIILli If 'present, is followed by a Itqic:11 cxpreerislorr which will he evaluated at the beginning of each
I oust) and which will ter inhale the loop if the value is FA ISL; de faults tcTltt1E

If none of die optional words are present, the mop will ire terminal cd only by Intentional exit or by
1-caching the Implementation dependent default value of th-RITE AT phrase. All repeat computations
involving the phrases FOR, FROM, To IIY, and RITEAT are resolved by the corn plIcr or generated code

prior to lop'InItiation and result In a maximum iteration limit. This coin puled value controls iteration
along will the t ItsITI I, and WI 1 IL I:, expressions. For this reason, acsignients to the FOR variable within the
loop will affect the values it assumes, hot will nut affect the 'mother of iterations in the loop.

The following simple example shows the advantage of combining, loop functions into a single
statement:

GAHILI
FOR i FROM 10 TO 1 OY Z UNTIL FH ER =LOF 00

myf leLarrm(ilmyfilei

PASO ALA
t11 =10;

FOR 11=1 TO 00

Kati
1/4-LAD myt I le;

IF LUE(nrvfi lit THLN GOTO

6LG N arrayll 10-rovf let; END;
ENO:

Th

`floe ('AM II. turin is not only an fir iprovement in flexibility tor the prugiatilille'r, bit 1 the routine 11
em mole it is sin aller t Ilan the three run titles used to compile the t hree l'Atitikl, iterative statements.

Cate Statement dry/ GrI/o) ;tie ,Slutenu -1st

'rhe CAM II case statement is a simile ex tension ut the A 1!(;01,/l'AfiCAL case statement. The
extension ;Idds an El .sh chose troy I ooca I completion of the set of possibilities. In the event that one of the

desigroitcd lags is not I ound to match II cAsr, selectot esinession. the ELSE clause will he executed if
present, This ability eliminates the frornetit need in l'Atit'Al. to imbed the CASI:. slA lenient in an IF-
'i`III:NA-ISl statement which can he pa dicta:111y awl:wool it the chosen tap cannot he expressed as a set.

It also results ill a [now e licient liol,lennentat ion of this rather frequent concept while clarifying the intent
t suc: It a combi ;far ion,

A He sv form of CAS!' called ibe (;O) 'ASV, is added. In this form, which appea rs identical to the

normal eases tat mien 1, the compiler avoit Is generation of the branch inst ructions which normally follow the
code for each tagged st .netlien 1. The resod) Is that if control is t cansterred to one of the to statements

rather than 1(1 the SE statement. it id all of the lollowitig largest staten lents will he executed in turn.
The I 1..!if. statement will; however. he rvinded, This form tit the 'ease provides a direct egoist-Acid for the
FO !Mit AN con-u nited (OTO while pi vim; it t he structured appearance ot the case sti tentent and avoiding

t he ni an uhet we of nuralerotts labels to capture this type of logic. While we do not expect to see this form

t tequoit ly used_ it does p noiide a t equivalent for the 14 ItTIAN/ ALGOL form of computed

1,0 am! the in ipletne oration cost 1(-.wry small. This statement is regiresente (I by preceding a normal

st Alcmene with the reserved word (;01 0".

24

www.manaraa.com

Judge Siai men

Since the primary implementation context ofCAMILirtcludes the operation of interactive terminals,

we felt a strong need to include a specific statement for+the acceptance and evaluation of responses. After

observing the Implementations of many systems, It was determined that one of the most powerful resporise'

acceptance mechanisms was implemented in the TI TOR language (Reference 3). The essence of this

mechanism in CAMII, Is a combination of an accepting, processing. evaluating, and kyorring function

combined into a sing_ le statement. Tire statement Is called the J IDGE statement and is so named after the

MICE contingency structure implemented in II ITOR. In CA MIL, the JUDGE statement has the following

syntactic form:

JUDGE
cres_onse accepting yen tence)

BEGIN
Cexaressien'Ilsta I <action st
cewor-eision list 1 Aactlon sta ement;

fb 0

cexor-esslon list) 1 .(action stat

END
1.=$E cno meth statement)

9

The response accepting statement is usually an accept Sentence acquiring input from the keyboard

into a bulltin variable called the judge buffer. It can of course be a comp_ound statement which "`mussages-

the colitent of the judge buffer after, accepting the input from the student. S,ince the normal accept

sentence allows inan'y options restricting the input, this s tatement isnot normally needed but it is available.

'The expression tag lists are normally anticipated responses or ranges of responses separated by

commas. In this way, more than one answer can be associated with each action. Ranges of n umbers,

integers, sets, strings, characters, and expressions arc allowed as tags, The compiler generates logic to

convert the contents of the judge buffer to all of t he types of things on the inelnded tags, and tries to

match each of the tag expressions to the converted content of the judge buffer. If a match is found, the

corresponding action statement is executed, and 'further matching is terminated. If no match is found, the

ELSE statement is executed if present.

After the above has occured, a semantic flag is next tested. This flag will have been set true if any

match were found and false if no match occurred. I f the flag is true when tested, the JUDGE statement will

terminate and the following statement will be executed - lithe flag I.s false, control will be transferred back

to the accepting statement if a maximum count has not been exceeded. Since some tags might correspond

to anticipated "wrong- answers which would require further input, the semantic flag cart be reset in the

action statement to cause further looping. In the same sense, the nag can be set in the ELSE statement if no

further processing is desired. the loop count is also a built variable and defaults to no limit if not set by,

the author, The actual number of times that the JUDGE loops is stored in another built-in loop counter and

is available to the author for his use if he needs it. An example follows:

er-ase;
on litre coi .5 wri fee
*Tress the Indicated keys to chip. ose a game ortaci am0

Some of the games way not b.e working.yet. You may

type In sguW If You want to leave now

The Hangman Game
The Spelling Game
The Race Game

25

www.manaraa.com

d The Startrck Game
e The Sphograrn Machine
1 The Empire Game";

JUDGt
accept Pine '5, riI th I nocap5.erase eeChol

BEGIN
.3° I GOTO HANGMAN;_

I . GOTO .SPELLGAMi.;
"e't r for '5 'see write flashing "not k nel Ye ";

J.FLAGe-FALSE'l
quit '1 K ILLPGH;

ENE)
ELSE

f or 3 Sec On I Ina 30 'col 7 vrrl to
"No, enter one of the Ietters In the menu or type U

to leave this Or am";

Sentence Library

Several standard sentences are available in the CAM language. These sentences allow the user to
perform several needed functions, and sonic elaborate special purpose functions. Most of the standard
sentences are implernpnted in CAMIL, but a few are implemented In PASCAL to avoid the swapping
overhead of frequently used sentences. Before describing the sentences, we shall explore some of the
standard prepositions which can be used with the sentences. Prepositions can fall anywhere within the
sentence and in any order, as long as they do not interfere with the verb-object phrase of the sentence.

The until preposition has a function key set as its argument and can be used with several verbs. is
. furetion is to provide a set of function keys which act as an until condition of the sentence. When the un it

condition is reached, the sentence completes execution and program control continues, All of the function
keys in the until set are considered as next conditions, and will not be considered as asynchronous function
keypresses if pressid when the sentence is in execution. Some examples of the until preposition follow.

The first example is a simple accept sentence in which the programmer wants the user input to be
accepted when either a NEXT, BLUE_NEXT, or a HELP key is pressed. When one of the untileondition
keys is pressed, whatever input the user has entered will be accepted and the program- will continue
execution after the accept sentence;

accept, tint 11° (NEXT ,Biel.)E_N5,XT HELP /

The second example is one in which the until preposition is used with the write sentence. In this case
the write sentence will output the information to the terminal and then pause until the until condition is
met (the NEXT or BLUE_NEXT key pressed). When the until condition is met, the write sentence will
then erase the displayed Ireformation and the program will resume control following the write sentence

unt I I f NEX TeBLUE_NEXT
write "NEXT -ta continue

BLUE_Ne.XT for' more int ormation";
fence control returns from the sentence using an until preposition, the programmer can find which of

the until .keys was pressed; in the sante manner lie can quer), which function key is pressed in an IF 130
statement. In the above example one might want to branch, depending on which key the user pressed
(NEXT or BLUE NEXT), The SYS.EkEY variable contains the desired infprmation so that the program
can perform the desired function, depending on the _key pressed.

26

www.manaraa.com

IA all of the sentences In which the until- preposition' is defined, there is also a time, limit which may

be imposed using the for prepOsition. When a time limit is imposed, the sentence will pause for the desired

1111101)flt of time, and if another action has not restarted thd sentence when the time limit is reached, the

sentence will continue. If both the until and for prepositions arc used In the son elsentence, the sentence
continues execution when either one of the until keys is pressed or the time limit is reached. To indicate

urdts of time in seconds, the post fix operator "sec" is available to make readable time caluses.

A. few examples of the for preposition follow. They arc similar to the examples for the until
preposition except that execution of the program is now resumed after the desired time limit is reached.

accept for 5 sec;

rite "hello" 1 or 3 sec ;

There are o prepositions which can be used to indicate screen ,positions: at and on. The at
preposition has two integer parameters whcih indicate actual x and y dot co-ordinates on the screen. The on

preposition .atio indicates a screen location, but OD a character level using the line and column operators.

Several simple uses of the at and on prepositions follow:

accept at 59104
accept -Ion, fine Z_ col 2
write "Next to continue" at 26115;
write "Next to continue" on line 28, cal 15;

Other special purpose prepositions are available and -will be discussed with their associated verb

phrases.

The standard sentence to request input' from the user is the accept sentence. There are many

variations upon the basic facility for response input. The basic accept sentence.autoniaticany places the

prompting arrow at the accept cursor, awaits a user response, and erases the prompting arrow when the

accepting state is completed. An elaborate sentence example could be one which sets the accept cursor,
displays the prompting arrow, limits the input length to three characters, only accepts, octal digits, converts

the input and stores it into an integer variable i, and places a 5-second time limit on the user's response

time. The following example would perform the functions described:

accept i 3 OCT for 5 sec on fine 24w cot 451

To describe the functions of the accept sentence the possible prepositions and defaults will he

described, The accept verb has four preposition types; an until set (the until preposition), a time type (for),

a screen position (at or on), and a with set (with).

The until preposition temporarily removes the asynchronouS nature of the function keys contained in

the until set, replacing their Meaning with that of an end -of -input terminator. This allows the program to

accept inputs and perform different functions on the input, depending on which key was used to terminate

the input stream: If ho until clause his present in the accept sentence, the NEXT key along with any keys in

the system defined variable SYS.UNTIL set are assumed to be the end-of-input keys.

An accept statement may also be terminated by a time limitwhich is specified in the "for" clause. if

a for clause is present, the accept period will be terminated at the end of the specified time limit, assuming

the user has net pressed one of the defined until keys. if no for clause is present, 'the accept period will only

terminate when one of the until keys o an active function key is pressed by the user.

The screen location clauses at an on are used to designate where on the screen the accept prompting

arrow is to appear. If no screen locat on is given, the accept will occur just to the right of the last item

written onto the screen.

27

www.manaraa.com

VIC with clause contains a set which allows several special functions to be perfo d during the
accept state. The functions which can be present in the with set are:

noarrow accept without. disO In%

echo do not echo user input.-

ok

uncles l ine drew a under 1 I ne d eying the 1 ength at the
accept Ii ,wi t*

eras echo erase time previous Input in 4 I udging state.

do not disal ay the ok/no in dge men t.

01 caps

nor a

touch

digits

octal di

trent! ate apt al ph abet ic keys Into coo/ to l I ze
,node.

trans; ate
case' mode.

C Ch -era

ac ti t the touch panel and accept data fromit.
only _acre t digits 0,-9 and symbol s

Pt an d

ni v echo/acceot octal g-ita e0-7 end

the accept verb also has an optional objet t which may be the subject of the accePt. If an object is
'pfesent, the accept verb will convert the input to the type of the object and store the results into the accept
object. For example, if "s" is of type STRING, then "accept s" will place the user input into the variable
14s1/

When using an accept object the accepting limit and accepting action limit can also be specified. Tie.
accepting limit indicates the maximum number of characters which will be echoed/accepted. Any
characters which are pressed after the accept limit is reached (also available through l.LIMIT) are ignored.
The accept action limit (.1.ACTION) causes the NEXT key to be Pressed when the indicated number of

ri)1characters have been input: Thus an accept with the accept li set to 1 will immediately continue .
execution after one character is imput by the user. The method f indicating the accepting limits is by
placing a ". accept limit : action limit" after the object. Thus accept 1.:5 placcs art accept limit of 5
characters on the accept, and accepixt : 5 : 5 places an accept and action limit of 5 on the accept.

The accept sentence also performs the necessary conversions to The. type of the accept object. For
exaMple, if accepting into a type Boolean, the accept sentence will convert the input string TRUE into the
internal 'representation for the Boolean value.of TRUE. As an added feature, when accepting into an integer,
or number,- the accept sentence will automatically specify an all digits accept condition so that only digits
are echoed. It Is also possible to signify an octaldigits condition by placing ": OCT" after the accept object,
or just OCT after an accept or action limit.

The accept sentence also has two alternate forms: accept more and accept rep, The accept more
sentence is used to continue accepting starting where the last accept took place. For instance, if the
characters abc were accepted and an accept more was executed, the accept cursor would fall after the c of
abe, and the abc would be part of the, current accept . That means all of the editing keys and erase keys

28

www.manaraa.com

could be used on the abc just as, if it had en typed during the current accept. The accept more sentence
does not have a clause for setting where the accept is to occur (obviously since the previous accept a being
continued), and it does not have an object for the accept either.

The accept rep sentence is for accepting and representatively echoing user responses. When an accept.
rep is executed, the "J.REPECHO" flag is set. This informs the driver to return control to the program after
one keypress has been received (so the program can provide a response) and also that the keypress should
not be echoed. All of the prepositions available with the accept verb are optional items to the accept rep,
but no object can be meaningfully accepted hito.

The Pause sentence.

. To temporarily pause program execution,. the pause sentence can be used. The pause verb has two
Optional clauses and no object. There is an optional until clause which signifies which keys can end the
pause condition and an optional for clause which can place a time limit on the pausing. If no until clause is
present, the NEXT key and any keys defined in "SYS.UNTILSET" are used as the continuation keys. If no
time limit is placed on the pause, program execution will be suspended until a continuation key or an active
function key, is pressed. Some examples folloW:

pause:
Pause untl ENEXTIBA K
stage for 5 sect'

The write sentence.

Pause untli NEXT is t,resses3
;CPause until NEXT or BACK Dressed}
CPause for- 5 seconds or unti NEXT-}

The standard sentence to display textual information on the screen is the write sentence. There are
several forms of the write verb, Nit the discussion westari first with the simple form which displays text
on the screen. The object of the write verb can have any of the standard types (INTEGER, NITMBEg,
CHAR, STRING, and LOGICAL) or any string contained inside double quotes (... 'The write verb
will convert any of these types into the proper form to be, displayed on the screen. More than one object
can be listed with each verb by simply listing them after the verb, i.e.,

Lie The an swe "'ans.' and the aver a 1 avg ;

Formatting is accomplished by following the items to be displayed with ' where the integer
is the Nsired length of the item being displayed. This makes it easy to generate lines of data with column
alignment, even when numeric items of different magnitudes are _involved. For INTEGER values, if the
length specified is not, long enough to display the entire value, the length is increased so. that the entire
value can be displayed. To display an integer or numeric value in octal, an OCT can folldw the ": integer"
or ": OCT" can be used and the value will be displayed in octal digits. When °Ca' is used, the displayed
number will be displayed with leading zeros as blanks. however, leading zeros are preferred (as in
memory dumps), they can be specified by using ZOCT instead of OCT in the sentence,- The following
example uses a length limit, OCT, and ZOCT:

;ern-fte 113 OCT' yE 1 la le IZOC1 on line 1 col 5;

. The precision of NUMBER values is controlled by spelling the entire character length of the number
to be displayed, and also the number of digits to 'dispray on 'the right -hand side of the decimal' point. The
form is similar to PASCAL and looks like ": I : p", where I is the total number of charkters to display
(including the decimal point) and p is the number of digits to the right of the decimal point. If the ": p" is
left out, the number will be (displayed without any fractional part. To display a number (n) with nine places
to the right of the decimal point and five places tt the left "n : 9 : 5" would be used. Numeric values are
displayed in scientific notation (i.e. 5.6 x 108) when ithere is not a precision specified.

Several prepositions are optionally available to augment the capabilities of the write verb. The at and
on preposifions are used to direct where the information is to be disnlayed on the screen. When using one

www.manaraa.com

of these preposit onsf the starting position of the message is specified, and the left write rnatgin is set he

specified column position io that any line overflow is aligned below, the first line.

The "for" and "until" prepositions are both available with the write verb and since they perform
similar functions, they will be discussed together. The function of these prepositions is to determine how
long a message remains on the screen, by waiting on a keypress or time limit. When one of the specified

conditions is reached, the information displayed by the write sentence will be erased, and the program
execution will continue.

The write verb performs all of its textual displaying in the write mode of the terminal. T dorm

Writing in the erase and rewrite modes of the terminal, the unwrite and rewrite verbs arc used, resp tively.

These verbs are used just as the write verb, since the only difference is that they, place the plasma panel into

different, modes.

When the flashing adverb is Used with the write verb, the message is flashed di the _screen until a
NEXT key or one of the until or for conditions is met. The write flashing clause has the same parameters as
the write verb, and the only actual difference is that .the message will flash on the screen until some

`condition is met. 'A simple example follows:.

write flashing "You have won" for 5 sec;

Other adverbs which are used with the write verb are "large" and `unlarge". They perform the
write/unwrite functions except that the text is drawn with vectors instead of with dot patterns.
the size' and rotation of the text to be controlled by the progam, providing a means to write out large

headings or to label graphs with vertical titles, etc.

Two optional prepositions can he used with the lorge/unlarge adverbs: rotated and sized. The rotated

preposition is used to control the angle at which the data is displayed with a default in the normal
horizontal position. The sized preposition provides the means of stating the size of the data compared to
normal size. By indijating two sizes (i.e., "sized 5,4"), the x and y sizes can be stated separately, allowing

either, tall and narrow or short and wide characters. If no size is stated, the characters are normal size

characters.

An example of u g the write verb follows:

Wr i tet large 'DEMO PROGRAM d 4- on lin

Graphic sentences.

There are several available sentences ton produce graphic displays on the terminal. Lines, dots, and

circles can be drawn, using the "draw", "connect ", "dots", and "circle" sentences. A brief description of

each verb follows:

The "draw" sentence can either dray' a line or plot a dot. Two prepositions can be used with the draw

verb: to and from. Both of the prepositions require two arguments which stand for x,y co-ordinates on the

screen. To draw a line; the from clause signifies the starting point, arid the to clause signifies tie ending
point. The sentence "draw from x,y to xi-5,y+5" will draw a line from the point on the screen representing

x,y to- the point x+5,y+5. If the starting point of the line to be drawn is the current write cursor; the frorn
preposition can be left out. The sentence "draw to x+3,y-4" will draw a line from the current write cursor

location (x-F5,y+5 if the previous sentence was just 'executed) to the x+3,y4 screen location.

To draw a sequence of connected lines the connect verb can be used. The connect sentence draws a

sequence of lines, starting at the first pair of points and connecting all of the listed pairs of ,points
following. Thus the sentence "connect x,y, x+5,y+5, x-1-3,y4- would produce the same results as the two

draw sentences in the previous examples.

30

www.manaraa.com

13oti.can. be drawn using the draw verb by leaving out the to clause. The sentence "draw from x,y
will turn on the dot at the x,y location of the screen. A dot can also be turned on by the sentence :'draw"
which Will turn the dot on at the current write cursor. In a similar manner as, for the connect verb; a group
of dots could be plotted using the dots verb. The dots verb simply plots all of the points listed in itsobject
list. The sentence "dots x,y, x+6,y+4, x+1,Y-10" would plot the three points listed on thescreen.

To draw circles on the screen, the "circle" verb is used. Several optional prepositions are available to
modify the type of circle which is drawn, but the only required object is the circle radius. A precision
parameter is optional. If no precision is present, the circle routine will choose an adequate number of line
sesments to use in drawing the circle to prOduce a smooth circle.

.Several optional prepositions are available with the circle verb to control the type and place the circle
is drawn. The first optional preposition is one of type "screen location" used to denote the center of the
circle. Either of the two screen location preposition("at" or "on ") can be used to position the circle. If no
position is given, the circle will be centered' at the current write cursor.

There are two possible 'clauses to control the period of time the circle remains on the screen by Wing
the "for" or "until" prepositions. These prepositions work in' a similar manner as with the write verb.

Other prepositions include the ability to control the eccentricity of the circle by using the
"eccentricity" preposition. This preposition allows. circles to be elongated along the horizontal or Vertical
axis, forming eliptical figures. Arcs of circles can be drawn using the "startangle" and "stopangle" pre-
positions. By specifying these angles, just pprtions,of a circle can be drawn. Zero and 360 degrees are the
default values for the start and stop angles, respectively. The last optional preposition proVides for drawing
dashed circles.

An example of how to use the prepositions follows. The circle is to be of diameter 50 (in dots),
precision of 25 line segments, to be erased after 5 'seconds or until a next key is pressed, and with
eccentric' 2.5 (elongated vertically).

4

5 sec tntil [NOT) circle 50,25 eccentricity 205*

A simpler example draws a dashed half circle of radius 100, which will look like the letter C, only
dashed.

dashed circle 100 -tatanale 90 stot an r .2TO;

The uncircle verb is identical 'to the circle verb except that the encircle verb erases when the circle
verb draws, and it writes when the circle verb erases.

Other sentences.

Some other standard sentences follow:

The echo verb is used in representative echo modes, that is one key is interpreted by the program as a
string and placed on the screen in the proper position using the echo verb. The echoed output is also placed
in the "J.BUFF" variable se) that it can actually be erased or edited using the erase and edit keys if an
accept more is executed by the program.

The erase verb is used Jo erase individual lines or to erase the entire screen. It has only one optional
object, a line number which indicates that only one line is to be erased. The default if no line is specified is
to erase the entire screen. When only one line is to be erased, the current left and right margins are used in
the erase operation so that if the desired line to be erased contains a graph or figure it will not be erased.

To load special characters into the terminal's random access memory (RAM), the LOADRAM
procedure is used. LOADRAM has two parameters: (a) a descripticin of the character to load as a Boolean
array and (b) the character position at which the character is desired to be loaded. When loading several

31

www.manaraa.com

characters into the terminal's RAM, care should be taken not to do a full screen erase before all of the
characters have been loaded, since a full screen erase ends all output going to the terminal (see the catchup
veal).

To operate the slide projector, the slide verb is used. This verb only requires one parameter: the slide
position desired. A negative slide position turns the slide projector lamp off, and any positive integer will
position the slide projector and turn the slide on.

The external verb is used to place data on the terminal's external output jack. The verb's object is rtn
integer vela which Is to be exported to the terminal's jack. Up to 50 values can be placed with an external
verb.

The catchup verb has no parameters of any kind and is used to use the program until all output to
the terminal has been Completed, This is a usefill verb when sending data the terminal's external jack or
when loading special characters into the terminal's 'RAM since a full screen erase would end all output going
to the terminal (including the types mentioned), and the output lines to the terminal nre relatively slow.

IV. CAME COMPILER PROGRAM

Implementation Factors

The-implementation of CAMIL consists of a compiler to translate CAMIL programs into executable
code, a terminal driver to schedule and interface the system to actual computer terminals; an executer to
manage the program swapping and provide implicit language services, and a large group of capabilities
written in CAMIL and available as built-in language features or.as system level CAMIL programs. Each of
these major areas will be described in a separate section of this report for ease of avoidance by the reader
who is not interested in all of these aspects.

Narrative Description of the CAMIL Compiler

The CAMIL compiler is a top-down, recursive descent, single - pass, optimizing, machine-code
generating, partial compiler. The major sections of the,compiler program are:

I. Interface Section
2. Compilation Driver
3. Lexical Scanner
4.. Declaration Section
5. Expression Section
6. Statement Section

The interface section of the compiler includes the attachment to the CAMIL data base, the compiler
initialization logic, the request reception logic, reinitialization logic to compile more than one program, and
logic to perform initial processing of source modules.

The compiler driver includes logic to read up and process all oT the necessary modules to determine
whether partial compilation is suitable and then to determine which of the source modules must be
recompiled. It selectively directs compilation of affected modules and stores the resulting machine code-and
initialization data as needed.

The lexical scanner consolidates character shims into identifiers, numbers, and stria., and
categorizes these elements as to type, returning one clement each time it is called.

The declaration section of the compiler scans data and procedure declarations within the source code
and builds internal symbol and structure tables for use by the expression and statement sections. It also
stores the initialization values for constant and varjable data types prqduced-by the expression section..

The expression section of the compiler provides for the evaluation of constant expressions and the
generation of code for the computation of computable expressions. It also computes the parameter lists for

procedure calls and lists of expressions used as the objects in sentences.

www.manaraa.com

The statement section of the compiler scans and generates code for the execution of CAMEL
merits, It calls le expression routine' as needed to compile expressions embedded within the

executable statements j

Data Base Interface

The compiler interface section Is necessary because CAMIL programs are stored in a structured direct
cm data base, Rather than appearing as a stream of characters as is often done; CAMIL programs appiar

as blocks of lines of characters. These blocks, or modules, arc created by an on-line editing program in
which the structure of the program/1s built incrementally as the modules are entered. The program is
structured from a program directory which contains the disk address of module directories. Each of these
directories contains tile addresses of source, initial values for data, and machine code modules for up to 30
modules of the A3rogrEmi. The compiler reads the actual lines of-the program byiiing the address of the
source modules to read the source modules from disk. After the module has been compiled, the resulting
machine code, If any, is stored on disk, along with an initialization module for any locally declared variables
if needed. The addresses of these ,created modules are then recorded in the module directory page which is
rewritten to- disk after all entries on the page are compiled. There is also a record containing all intermodule
cross-reference sets, arid an error module containing the location and type of,any syntax errors. Any active
autopsy records are alio attached to the program directory. _

Since the compiler is written iii the PASCAL language which provides no interface to CAM, .the
PASCAL compiler has been modified to accept CAMIL file declarations and die access statements. This
allows the compiler to read and write records on the data base whenever CAMIL.is running on thesystem,

- even though the compiler is running at a separate batch control point. Separate CAMII: files arp:.defined as
Follows:

Pot The e of all program address and status in fo
POUT*: The filer containing deta11451 inf o about programs
MO: The file of all module and 'post mortem directories.
ERRORS The fide of a l l error modules
SOURCE,: The f i l e of a l l source and post mortem data
OBJECTS The file of all code and Initial va es mo du I es
COS The file of all partial compile data cords

The PASCAL file interface aqtornatically opens defined files upon first access and closes them upon
compiler completion: The compiler synchronizes actions with the program editor (from which compilation
requests are made) by inspecting and changing program status in the PD file. File accesses are made throu
a group of procedures which centralize all data base access for maintenance purposes and process any I/O
errors which may have/occurred-while accessing the dat base.

Since the .CAMIL corn pileft was designed as a resident compiler, it'Was intended to be initialized once
and then would compile progarns upon request indefinitelY. Also, since the language definition includes
many "built -in" routine libraries and variables for interfacing to the interactive terminal, these must be in
the compiler symbol tableat the outermost lexical level. The interface routines accomplish this- by first
creating a request to compile a program which contains these definitions and then establishing the resultant
symbol tables at a point where the reinitialization logic will not remove them as it prepares to compile the
next reque ed program. The compiler is returned to this configuratibn prior to compiling each program.

Because of the modularity of the program, the:usual overhead items such as code buffers, line and
column counts gi etc. must be reset-as each module is entered. The interface logic performs each of these
tasks and reads source data into the input buffer and initializes the lexical scanner. Due to the partial
compilation logic, only modules which have been changed or affected by changes need to be processed,
thus saving I/O as well as processing time.

t.

www.manaraa.com

Corte latl giver

The compilation driver activates the major sections of the compiler and dicides which modules must

be rerbompiled..The process begins accepting a compilation request and reinitializing thecompiler, which

ii a very simple step. It then looks *information Stored with the program to see if anything has been

changed since the last compilation which would force the program to he totally ,recompiled.,,Such

conditions might be a new version of the compiler or executer, chanriaa to the definitions of built-in data,

or compiler failure during the last compflitIonIf this not the case, a partial sompile is instituted.

The compiler deckles ivhst to compile by k ping cross-reference sets Mir each module of the

Proffer), It Uses set ridge to determine whether.edito al changes to definitions Hof dati or procedures will

ripple to the executable code modules. This is done byconsidering direct changes to definitions, changes to

definitions used in subsequent module definitions, and changes which affect the addrelsing of variables

subsequent modules. The program editor assists In this by keeping procedure' headings actually separate

from procedure bodies, although the editor and listing program disguise,..this fact from the user. In this

manner, it can be noted when the user has chviged the he4ding, thus causing modules which' refer to the

edited module to also b recompiled. Internal Changes do not of course requite-this and they are by far the

most frequetit type of charge.

By performing quick set union and intersection Operations, a compile act of modules is constructed

which is then used by the driver as it reads module directories to determine when it should activate the

module compiler. During actual module compilation, the symbol talie lookup routine enters the number of

the module which contains any identifier it has. found into a "refers to" set for the modfile It is compiling.

This set will he saved for the partial compilation decision in the ne4.compilation. Naturally, any module

which contained errors irj, the previous compilation must be recopiled, and this is reflected in an error set

generated durtirrei: Tompilation, which is alsd factored into the set logic. Actual compilation steps arc

activated by calling a module compile, which first compiles declarations and then executable ,code as

appropriate for the module, 11 are activated as the declaration and statement sections, both of which

expression section.

Upon completion of compilation of all modules, the compiler then calls appropriate parts of the

interface section to store the r _ and cross-reference data and releases the program for execution or for

repair of syntax errors through further editing.

.xieal Scanner

Since the CAMIL compile sin -pass in design. the lexical scanner is designed to be called by the
=

.parsing routihes and will return`) .singlc token at each call or identify that there are no further tokens in the

module. Scanning results arc stored in .1Oariables, one of which is available for each primitive type of

literal token tint can he built froint ers. The token encountered is categorized into a in: or symbol

'Class lohikk dcootes tiw,foridamental type of the token, ix., particular reserved worif, comma, parentheses

etc. Some of theie fundamental kinds arc further classified to provide more detail. Forexample., a KI:LOP_,

or relational operator would he further classified into EQUAL, NOTEQUAL, LTI1AN, GilIAN, etc. This

'dual classification allows all major syntactic delimiters to he placed into a single PASCAL set, which is quite

important in the error recovery process:

The scanner is designed to work with the information format of the CAMEL editor. The editor

removes any leading blanks on source lines and packs the string length in characters and the number of

leading blanks into the last two characters positions of the last word of the string. The word size of the

string is packVd into the rightmost four hits of rile first word and tast word of the string, which enables

both the complier and editor to identify the size and last word of the string. The strings of sourcc4rc

otherwise treated as part of a large packed array of seven-bit characters and thus the leftmost 56 bits of

each word contain eight seven-bit character fields. A single word ean thus contain up to a six-character

string, while the largest string can contain up to 120 characters. The four.hit word size field contains 0..15

34

www.manaraa.com

` denoting a stringlingth of from 1..16 words. Since-the CAMIL character set can denote up fo 256
chariotter,,posithirtai an elope code (the LANG keyboard key) Is used to switch from the permanent 128

'IOW' to the user.loadable 128 characters. the infrequency of this alternation results In good packing
wlthIn theTYBER 60-bit word size. 1

The scanner is also respontible for constructing the internal representation for textual displays.used in
screen display sentences: In this case,- the text is compressed Into a special six-bit format essentially ready
for immediate release to the display terminal. In this mode, each line of the textual display. will he
leftjustilled against the mugins In effect at the lime. of display, thus achieving a very close relationship
between the appearance of the text within the CAMIL program and Its appearance on the screen when the

program is executed.

The scanner will 'enforce lexical rules for the,.conipdxdition of literals, such as identifiers, numbers,_and
strings, and will also enforce semantic,restrictions such as the size of numbers, limits on numeric precision,
orbit size for octal and hexadecimal constants. Although a character pointer is not maintained xplicitly..
for Speed purpose's.- the current scan position within the source 'buffer is maintained by the scanner and Is
used by the error reporting routine to construct the exact column position at which an error was detected.
Upon reaching an end-of-module condition, the scanner will return an end-of-module token; and if within a
quoted string or similar token, it will produce an appropriate error vessage. This is needed to handle the

, oc, 'oval error of mismatched (imitations or failure-to close a comment and allows the compiler to limit
the probleni to the module in which the error was introduced.

)edaration C'omin

The declaration section of tIte compiler is activated when procedure declarations are scanned,',when
private ,and shared data definition modules are scanne(L'and at the beginning of each executable module if,:
declarations are present. The results of any of these activations are the creation of tree structured
descriptions of any types 'declared in the program, the construction of the symbol table for identifiers
defined in the declarations, and allocation of storage to Contain program variibles. Because CAMIL
constants and variables may he nit ali,ed, the declaration section must also constritct the run time
representation of initialized storage and provide tiorsaving this information.

CAMIL -provides no forward procedure declaration:All procedure totalities defined on an editor
directory page have their heading. bitated together in a single module of source text. The program editor
provides a function key to allow the,author to edit the heading of a procedure while editing the body
module arn1,1(eips track of the locatiOn of each tprocedure's heading within the slink source module. The

declaration ploeessor reads this one source record for every page of proceddredelcarations and :enters all
procedure declarations lino symbol tables prior to compiling the-body of aoy'procedure. Thus all 'procedure
definitions are nyocessed 'prior to compiling any procedure references, :eliminating the need for forward

" procedure declaration whileipe6moing tninirual I/O to obtain this information ..Module directories contair.
the names of segment type modules, and these are also entered into the symbol tables as available labels rto
which control may he transferred.

The declaration section is next applied to all -global level (private,shared) modules,Sinc the basic
A

foormat of CAMIL declarations is 'type specification> <name list> for any class of stOrage (constant,
variable, Name), a common TYPESPEC routine ispovided for processing all type definitions while separate
routines (VARDEC., CONSTDEC, And NA MITIV) are provide(for processing-the differing:requirements
for each of these Storage classes. Because of the limited numb r of base registeli available on the CYBER,
all addressing is absolute for global storage in CAMILAs a co sequence, if the M.I.6 of precedieg modules is
changed by internal editing or redefinition of data-Within a p 'ceding module, subsequent modules

.

and any

modules which refer to thin will have to be recompiled also to obtain mope(addressing. The declaration
section must thus record tbe starting address assipied to each module because this affetts the partial
compilation decision.

www.manaraa.com

aration is processed, the TYPESPEO'routine is called to build the structural description

or the tetl type. If explicit TYPE Identifiers are encountered, this routine merely references the
existbl Inchon, If compound types ate structured, such as ARRAYs, RECORDS, or FILES, a tree must
be struelIrred containing each of the imbedded types. A special routine, COMPSPE.C, is provided for record
and procedure headings since these are very" complex In CAME. Simple lypes such as subranges, type
identifiers, and user defined classics are Itantfied by a routine named PRIMTYPE, meaning primitive type;
whereas most other compound types are luutdied direQtry by TYPESPEC. The call to TYPESPEC returns a

pointer to the type definition, which will be !newly the head of the tree structure for compound type
definitions. A routine called COMPI-YPE Is available to deterinine.whether two types are compatible and is
used extensively during executable code compilation to determine whethr the types of two operands arc
greeable or whether the type of an expression encountere'd is the type,anticipated. This routine is also used

during declaration compilation to comPar rte types ofconstant expressions used for initialization with the
ize.types of identifiers they are being used lo

A side function of the TYPESPEC rt itirie is to dcterniine the size words and bits needed to
represent the indicated type of .entity,. when -a type definition req! ests that storage be packed, TYPESPEC
will use knowledge of addressing rules 1.0'deterinine the most efficient°way of packing data together to
minimal 'size without sacrificing accessibility, TYPESPEC will return, in the resulting type information, the
size of the total definition encountered, This information is used by the allocation routines in VARDEC,
CONSIDEC, and NAMEDEC to determine storage allocation for the indicated defined identifiers. If &n
initialization" expression is encountered, i',XPRESSION is called with the TYPESPEC of the identifier to be

'. nitlalized acid told to attempt to accept a constant expression of the indicated type. If this attempt is
sue,ceOftif, EXPRESSION will have computed the value.of the expression at compile time and placed the
esultMg value at the ;address in the object code buffer correlated with variable being declared. If nn

initialization is found, the compiler will 'Cr"Ao the associated size of storage in the object buffer. In this
manner, values- for all constants and ballialized variables are generated as the declarations are compiled. If
;upon completion Of all delarations, all initial values are zero (a very common situation);the compiler will
note this tad in the': module directory, whet than saving the initial values so the prograntloader may use
this information to initialize tlitqnocluledata areas to zero. Because resulting initial values:are built into the

_ buffer, data areas are currently limited to the size of the code buffer, but minor modifications could
ve this buffer to ECS, allowing it tot cr :1 isiderably in size.

DeclaratiOnS local to a eroceditte or segment are. located at the beginning of the body and are
compiled by calling DECLARATION for every module. The same process described above takes place with
the exception that the PASCAL heap is marked prior to activating DECLARATION. Since any items
defined locally are unknown outside of the ho,dy, any type data or symbol table entries created inside
DECLARATION are not needed ,after it has been compiled. Thus space allocated for this purpose can be
returneil-after the module has been compiled, reducing the total space requirinerit for compilation.

nt Compiler

floe !xecutable ; talemeait section consists of a iiianager routine, STATEMENT, that identifies which

type of statement is being compiled, and a set of procedures which each recognize and compile one type of

CAMII, strtentenL Each of these routines recursively, calls the EXPRESSION or STATEMENT routine to
compile embedded e erosions or statemertts, Faith routine is responsible for consuming an entire statemi

)1 the type it specializes and recovering any errors which are found in the statement'.il

coin piles. 'In to prevent any statement koutine it calls recursively from running away and consuming

part of the statement handled by the'calling routine, of stop tokens is passed recrirsivelYidowdthrough

the calls. Each routine called adds its-cW4fli Slop ontb to the set it receives and pisses, the -result to any

routine it calls. No -called routine may 'cross any Jokenin:this stop, set while recovering from syntaxerrors
unless the token- could leOtimately helont to the statement compiled by the called routine. In this ma

multiple errors which [night be caused by "eating" important reserved words, such as"EN,D", "DO",

are significantly reduced. Special to iic to treat conlnionly..'etiCouilleted has.been easily added to

www.manaraa.com

_ statement recognizing routines since each may be individually tailored without altering the compildus
a whole.

Each statement in CAMIL may, pr o vide unique opportunities for local optimization of the machine
code. For example, in the IF statement, after executing the selector expression, machine registers will
contain the same Information regardless of whether the THEN or ELSE statement is selected. The IF
statement routine takes advantage of this fact by compiling code for both statements ac though the
variables used In the selector expression are available in registers. This requires the IF statement routine to
save the register status after EXPRESSION is called to compile the selector and to assert this information as
STATEMENT is called for both the THEN and ELSE statements. Thus unnecessary reloading of registers
may be avoided for both imbedded statements. In a similar manner, all other routines which compile
statements perform various degrees of optimization as possible to improve the size and execution speed of
code. Since tl-Us optimization is accomplished as the code is being generated, no subsequent ptiiWation
pass is needed pad information about the expressions need not be saved for long periods of time.

. The instruction set for the CYBER computer does not provide a relocatable conditional jump
'statement The effect _of this shortcoming is that branch instructions generated to implement statements
such as I E -T HEN.E LSE, CASE -DO -ELSE, FOR .FROM.T© -DY.WHILE-UNTIL.REPEATDO,
operation-ELSE, and JUDGE-ELSE must be generated with knowledge of the absolute address where the
code will reside at run time, or a relocating loader must be used to modify the code prior to execution. The
CAMIL, compiler uses absolute addressing, thus eliminating the need for code modi fication by a 'oat* but
creating the, potential problem of snapping code into the proper location. This problem is solved by
generating code as though all seginents and all procedures exec ute in the same area of central memory.
Since only one segment is ever executing at a-time, this causes no problem with segments. llowever several
procedures can be executing simultaneously, so a solution is reached by adding a swapping act ion each time
a procedure is called or returns. When one, procedure calls another, t he called procedure is swapped in from
ECS onto the code for the calling procedure. Sim ilarly, when it returns. the calling procedure will he
swapped back in. Since the CYBER can swap memory- approximately 10 tines faster than it can execute
code, the resulting overhead is quite low and is often necessary to perfOrni anyway since the program
constantly being swapped into central memory for time-sharing purposes,

Expression Compiler

The expression section of the compiler is responsible For the cot puts tion of all constant expressions
and for the generation of machine code le. ill computable expression The implementation of procedure
calls in- CAMIL hunter requires that the expression routine generate all procedure calls, sentence calls,
function calls, and all user declared prefix, infix, and postfix opera tors,

CANOE resolves all expressions or subexpressions involving constants at compile time. This means
that any time the expression routine finds two constant operands and an operator, it will merely replace
these with the result obtained from executing the operator on t lie operands, Since the compiler runs on the
same machine as CAMIL, the result is identical to executing the code at run time. This means that complex
expressions involving constants may be used to define other constants or to assign values to variables. Since
CAMIL allows mutt ivalued data types, such as arrays and records, it also provides ni ultivalued constants to
use as values for these data types. To reduce the character size of these expressionS, a repeat operator is
available to 'denote the repetition of a part icular record field Or array cell val ue. When these expressions are
constants used for initialization, the resulting multiple words of memory are defined by the compiler and
an assignment becomes merely a nuiltiword copy rather than code to pack all of these fields, thus saving a
large quantity of code space.

The expression routine also generates the machine code t c reale m ult (valued expressions such as are
Used as the values of records or arrays. The CAMIL declaration section generates identical s tructual
definitions for procedure parameter lists and record field lists svith the result that any type oh procedure
call, i.e., operator, function call, sentence, regular call, is effectively an operator acting sin a single record of

37

www.manaraa.com

the typ o I the pariiineter list. The manufacture of- such items on the stack is petit-rimed by a routine called

composed cxpressian "COMPEN1'14-y 'Fins routine is the heart of all -procedure call activity and is the

most complex routine in the (' \1 IL en mpilet. 13ecause a record etc, in ay contain OPTIONAL fields which

may or may not be present. OMPEXPR must repeatedly try to match the types of expression it iF

encountering with t he a llowabi types oltxpression which may appear in any field position. It is this

facility which provides the flexibility which allows the highly complex "write" and "'accept" sentences of.

CAM IL to he defined in ('Al IL rather than being hand coded into the compiler as is coin monly done for

I/O _statements. Doing it t his way alsr, malies this power available to users tor pert oranng their own

ex telisa_ins ot the language.

cf.""Pt)sed c:SI'ression routine also pc norms another very '1111)0.0am function needed to support

the sentence exitensi tidily feature. WI len a procedure or record definition includes a variant definition such

as

CASE Pr MTYPE
3 GIN
iNnl r'INTEGE ';

4 UM t 'NOBILk ;

:,Hk) ";

whir: ityrryn
ex prt_iis tor; suer: as

I 3 7 56

(=less eentairrini- I N I ,

)

and then -Otiteh NPR coin roses an

in iv tick t he number 7. 56 hills Into enrtesptmtleritt synth the variant field, rut aptly will the value of 3 7.56

tic ,c.ssn:nied to the vat-taut. htit the al of the col responding lag "Nll M.' will he assigned to field -1-)".

When such a VJr1:111t tlziinitioit is 1.1Se' d t o_det 111e 1111: parailletelS 111 a procedure call l) senteme object, the

resul tin g routine may be called -wi th v of the allowable types such :is NIL:GER, NUM IIhR, or AR,

and the p ioce(lurc can identity what type 01 par:outlet was passed to it by examining the field "p'`. I Isinp, a

itlefiratton like this., tine oiled of a s,entente such "write- is defined is ;in allay of records each

containinp, one optional variant field of the general type included akwe, 'rhos risers of "virile" may call the

tontine with arty ia the rilloiyal.de varta-As argil the compiler tells the %MN MO(VIC the type Or each °title

orpurnents passed t hiough the (`_ \SI varno selector variable -p flie routine can of cotnse branch

naiely tin this type tri CAMII. ode to convert :nut print each of the allowable types. Since the

dem cots of this arras: 313' Opt , t he program Call also test to See how many of the array

deny en ts,have act mtlly been compose d thus only process the elements which have actually been passed.

CtilVTIPLX PIZ supports this by senior a field Ili the record which can be testa(with the [AM'',

o {icr.itur to see if the er),[espt,ntlills opri on al field is NI

Lie l'XE'R FSSI (1rN1 routine is ltiglib dependent on three usher r ()finites, 1,DAl), STORE, and

SI VTOR , for ohla int min nu nil the operands it computes, Lot compatibility with PASCAL, tor

lilt itii-priscs, these rennin's woe obtained by modifying, the concspooding routines in the

PASt..A1, compile! (lc le tepee .! t to be compatible with CAW!: :Ilysolutc adtlressirlg requtreinents' In this

manner, m t is'p ossih le to w rite t 'A MI I. -and PAS(' AI record definitions which exac11,./ match in 'tultlressing

Held for tield. This makes it possihle to w rite ('AMU moo-anis tor interactive we ut ton which record data

for analysis by hatch l'ASCA prtip-311)S. This is exactly the met hod used by the program editor

when it creates oroitram duce, oites which art' 111 11)111 used hS.' 1110 ('AMIL, compiler and print programs.

is XI')N is actually composed of 'Ave levels of reclusively twatQd procedures which each implement

the -,ipera tors which occin on live din event pieccdence levels. SLUT 11) R is used to generate the code

necessary In rale Ida le in ray , ecoul, ne rrterences,while I Al AD uul STO RV gen crate code to actually

plac the Selected operand into a regrsior 0l insert u into memory. Since CAM! I, provides that existing

riper :dors may ho xrentled to new- 11Sel (II led (S'Ih'S whde ain ther r ri or nhal [-Precedence, each level ()I

operator mast) 'chock Ior the lit -'scat))I user wife! notions 01 the opera to!- het we reiecting an

www.manaraa.com

expre§sion. These operators implement the numerous CAMIL, built -in operators such as "line ", "col"
"min", "sec" which are used to produce the highly readable CAN-1 II-sentences.

V. CAMEL EXEC1T10144 SUPPORTSYSTEM

The CARL run time environment consists of 'a collection of programs and routines written in
PASCAL, COMPASS, FPU COMPASS, and 0.1411-. While executing, the system occupies three. hatch
control points (including the compiler control point), peripheral processors, and SCOPE operating
, :in rnodirications. Each of the six basic programs (three batch programs and three peripheral programs)
are separate prdcesses, and communication between the processes is accompiiihed through ECS and
ee nt er al memory buffers. The basic components of the system (excluding the compiler) are:

1. The terminal driver program: "ORIN/ER'.
2. The CAMIL execution program: "EXECUTER"
3. The CAM IL File Manager.
4:- The peripheral routines:

a. The terminal communications program: "INO"
h. The CAMIL program timer: '"f "

c. .'.The CAMIL disk interface program: "DAB"
S. SCOPE operating system modifications.

Terrnirul Dirivcr

The basic function of the terminal driver progianis to provide the apability of curnmanicating with
the ten-Muds. The central memory driver program is needed to analyze the keypresses and perform the high
level asynchronous interface between the terminals and the CAMIL programs. however, the central
memory program is incapable of direct communication wit he I/O channels connected to the terminals,
so another process is required. The driver program communicates with a peripheral routine (INO) through
central memory buffers so that all terminal communications are taken for granted in the central memory
program. The peripheral routine, in turn, performs the actual data link between the central memory buffers
and the terminals through the proper I/O channels.

The terminal driver, "DRIVER" occii one of the batch control points and is written mainly in
PASCAL With a few COMPASS packing routines. It is broken into the following sections:

I . Initializat ion sect ion.
2. Key-input section.
3. Con niuni cation section.
4. Fminin g see tion.
S. Job scheduler.
6. Patch file manager section.

Each section is basically a separate section, but some interaction does occur between the job scheduler and
other sections. The sections are implement ed as single procedure calls for each seetion , so the in ain block of
the driver calls each of the different sections:

Initialization Section

The kiltializa lion section performs the initialications of the variables riser! by DRIVER and also
initializes EC'S which is shared with EXECUTOR, The initializations are accomplished by having the driver
call a peripheral routine to initiate another j ob at the execute r c ontrol point which shares the driver
area. The job then initializes IA'S and also places all of the varia ble initializations into ICS an d the driver
just does ruin ECS read to initialize all of its variables, Once of the required initializations are coin rioted,

www.manaraa.com

DRIVER again calls a peripheral routine to initiate EXECIJ 'IER at its proper control point and then waits

until EXECUTER completes its own initializations, at which time the system is active.

Key Input Section

The key input section of DRIVER interrogates the incoming keys from the terminals. DRIVER ivy

echo,buffer, or ignore the incoming keys depending on the state of the program for the corresponding

terminal. The key section supports features in the accept sentence which:

I. Allow the user to limit the number of keys which may be accepted.

2. Process the response when a specified number of keys have been accepted.

3. Limit the keys to upper or lower case letters or to digits.

4. Noltbit keys from automatic' echo.

5. Inhibit the automatic response input arrow,

6., Accept input from the touch panel (a rectangular ring of infrared light emitting diodes along the

top and one side of the panel face with corresponding sensors on the opposite sides, which can detect a

finger touching the screen at 256 discrete areas formed by the intersection of 16 vertical and l6 horizontal

light beams).

7. Schedule input ant ornatically upon' each keypress to support representative echoing of keys

pressed in a manner selected by the program author. The key section also intercepts active function keys

and processes the synchronous or asynchronousineaning of these keys if they are currently defined.

COMmurtication Section

The communication section of DRIVER receives messages from the CAMIL programs executing in
EXECUTER. The typical messages sent to DRIVER indicate some type of action the job is waiting on

such as user input, a pause, ,a operation, or just another time slice. DRIVER will decide what the job is
waiting on and will perform actions requested by the job. A job which is reejuesting a new time slice will be

sent to the scheduler, where it will be assigned a priority according to its utilization sate.

Framing Section

The framing section of DRIVER is a synchronous routine which must emit output for the terminal
interface program NO every I/60th of a second. Each terminal can receive at most one.20-bit parcel every

1 /60th of a second, so the framer most break down the output going to the terminals into these 20-bit
parcels. It must also keep track of what parcels have been scat and to which terminal each parcel Is to go:

When a terminal detects a parity error in a parcel it receives, it -fejects the parcel and begins transmitting
data to the central interface unit that it has done so. The franieerecognizes this condition and requests that

the terminal tell him the number of the last frame received, DRIVER then resumes transmission

withithis parcel, thus insuring that no data are lost at he terminal.

Job Scheduler

The scheduling section of I RIVER contains'three separate queues for scheduling CAMIL johe. A Job

is placed in one of the queues, first depending on the reason the job is being scheduled (keypresses being a

top priority) and secondly depending on the utilization rate of the job in processing milliseconds per
real-time seconds. Jobs with low utilization rates '(< 5 ms/sec) are placed into the top prioritYhaVeue, jobs

whose rate, is < 10 trisisec go into the next queue, and the rest of the jobs are placed into the final queue. If

a job utilization rate is > 15 ins/sec, it is placed into a wait queue for as long as it takes to lower the
utilization rate to <, 15 ins/sec. This helps keep CAMIL promarn response times consistent with each

execution and less dependent on the system load.

Jobs are removed from these queues by DRIVER and placed into an execution array which is

monitored by EXECUTER as space is made available in the array through the execution of jobs already in

40 4 4

www.manaraa.com

the array by EXECUTER. Highest priority jobs (
of their low utilization rates. The next two slots ar
higher utilization rate), and the last queue gets
system (Reference 5) shows that the response time
because utilization rates are limited and priority is

Baying the scheduler within the driver pro
their accept or pause criteria have been met, and
a high priority. The imbedded scheduler also allow
when a keypress arrives from a terminal not yet
file manager program (when 1/0 requests from a b

Batch File Manager Section

Requests for CAMEL file manager operatio
the SCOPE file manager modifications. There i
which the driver schedules each time a file man
The CAMIL job then calls on the file manager
request has been satisfied, the CAMIL program
and the diner then suspends the CAMIL job un
SCOPE scheduler prevents the batch requesting
been accomplished by CAMIL.

.

e first queue) are given three slots in this array -because
for jobs from the second queue (only two slots due to a

nly one execution slot. A simulation of this queueing
do not deteriorate significantly as system load increases
ven to jobs using reduced CPU time.

ain allows the driver to schedule CAMIL *grains when
o allow a fast response to user key inputs by giving them
the driver program-to initiate a new CAMIL job (known
fined to the system) and to schedule the CAMILbatch

tch job are requested).

same placed into a central memory buffer in the driver by
a CAMIL job associated with each batch control point,

ger request is received from its associated control poMt:
complete the batch job file manager request. When the

otifies the driver that it has completed the file operation,
it another request is made. A o owl,: modification to the

ogram from further executiOli Ilrlf the I/O request has

Executer

The "EXECUTER" program occupies the other control point of CANT), run time environment.
EXECUTER operates in two modes: system a d user. The system node, of EXECUTER performs the
system initializations and swapping of the CAM L programs. CAM IL programs execute" in the user mode,
after the system- mode swaps in the job.

The EXECUTER is written mainly in PA CAL, with some routine's and CAMIL primitives written in
COMPASS. TheCAM1L program area is also de -tared in COMPASS to guarantee that the CAMIL program
area is always in the same absolute memory space even thoughl the relative addresses of EXECUTER
variables may change. EXECUTER occupies 55 000 octal words of central memory space, which includes
all static memory requirements for 60 CAMIL jo`s.

System Mode

The system mode of EXECUTER has its
system. System, tables and variables which are s
mode. Also contained in this area are the addre
as program control blocks, systeni routines, a
is broken into three procedures: swapin prcice
and one main program block.

own memory space allocated for the run time stack of the
red in central memory are directly accessible to the syStem
s tables of system information which is stored in ECS, such
system shared variables. The system mode of EXECUTER
re, swapout procedure, function key processing procedure,

The swapin and swapout procedures perfo rm the swapping of CAMIL programs. Once a CAMIL job is
scheduled, the swapping procedures are-called to perform any necessary swapping to execute the CAMEL
job

Before control is passed to the CAMIL program, the function key procedure is called if the job
being scheduled due to a function key press. he function key procedure will search through the program
run time stack to find the latest activation of c pressed function key. Once the activation of the function
key is found,- the function key processor will 'nd.the stack (if necessary) to the function key activation
level, and set the return address to the functi n key definition address. 'Thus when control is passed to the
CAMIL program, the function key' processing bode is executed.

41

www.manaraa.com

The in program section of EXECUTER searches the execution array (which the DRIVER fills) for

CAMIL jobs t execute. When EXECUTER finds a job to execute, the proper procedures are called to

swapout the previous job (if necessary), swapin the new job (if necessary), and perform any function key

processing (if necessary). Control is then passed to the CAMIL program; and the EXECUTER enters the
/ user mode. When the CAMIL program re-enters the system mode, EXECUTER. searches for more jobs to

swapin.

After searching the execution army, EXECUTER will check the file operation pointers to see if any
phOical I/0 operations have been completed. If there have been, EXECUTER will swapin the jobs that

have had any I/O operations completed. Wben the EXECUTER has no more jobs to execute and no I/O
operations have been completed, it relinquishes the processor to allow the compiler and batch jobs to have

chances for the processor.

User Mode

The user mode of the EXECUTER uses the CAMIL program run time stack for variable storage. The

CAMEL program is swapped into a section of EXECUtER central memory space and given control of the

processor. When the CAMIL program is swapped into central memory, the timing routine is notified-to
begin timing the processor usage of the CAMIL program. The CAMIL program is then allowed full control

of the processor and must voluntarily relinquish the procesSor back to the EXECUTER. If the CAMIL

program does not release the processor before its time slice ends, the timing routine notifies the CAMIL
program to release control of the processor by setting a flag which the CAMIL program automatically
queries through code generated "at points where the program might otherwise enter art endless loop.

The CAM a, language has many built-in primitives which need to be accessible to-the userprogram.
Most of the primitives could be coded in CAMIL itself, and many are, but for efficiency sake, there are also

some coded in COMPASS and PASCAL.

The CAMIL primitives which are coded in COMPASS include the arithmetic functions (SIN,COS,

etc.), tile manager linkage, procedure calling linkage, string operators (concatenate, search, etc.), and

conversion routines (string to integer, integer to string, etc.). Linkage is made to these COMPASS primitives

through special handling in the compiler width places the parameters in special registers. The JUDGING

primitives, reprieve logic, and control transfers (systeariuser mode) are also written in COMPASS. The

total get of COMPASS primitives occupies 2,316 octal words.

Sonic of CAMIL primitives are programmed in the PASCAL language and are physically located

within the .EXECUTER support program. The linkage to these procedures is similar to normal CAM IL
procedure linkage so that the compiler need only make a minor change in the nrumal prelceclure calling

sequence to call a PASCAL primitive. The local variables of the PASCAL primitives are placed onto the`user

run time stack in the same manner that local variables of CAMIL procedures are added to the stack.
Because PASCAL procedures do not have code compiled in to check the CA TAIL time slice flag, those

critical routines which may use resources cOrrilaon to all programs will not be interrupted until they have

completed an entire logical process, although their execution time will be allocated to the CAMIL program

calling them. The file manager, write sentence, accept sentence, and procedure and segment swapping are all

implemented as PASCAL procedures.

Most of the CAMIL primitives, are written in CA MIL itself. These procedures arestored in a section of

ECS which is reserved for system procedures. When a system procedure is called, the procedure swapping
mechanism sees that the called procedure is a system procedure and swaps it in figpi the system procedure

. The system procedures also have a special central in(mory area which they -=,Wapped into. This is to

he system procedures to reside in central rneniory longer and reduce sw,apping. Some of the
primitives which are implemented as CAMIL procedures are write large, circle, draw , erase, slide, echo, ok,

no, sized, pause, connect, dots, external, and all of the system functions available with the AUTHOR key
(monitor, talk, autopsy, etc.). The write sentence has not been made a CAMIL procedure due to the many

procedures used by the write sentence, [because the write sentence is used quite frequently, and many
procedure swaps would be necessary for each call of the write sentence, it is resident in central memory as a

PASCAL procedure.

42 4

www.manaraa.com

Because the CAME code is machine code, mode errors become possible due to improper arithmetic
operands. The reprieve logic of EXECUTER performs art interrogation of any mode errors. If EXECUTER
was in the user mode (a CAM IL program was running) when the error occurred, the autopsy routine would
be called to store data for an autopsy of the program. The CAMIL code also provides run time error
checking of pointer values,4rray subscripts, and subrange values. The reprieve logic must also check for a
mode error caused by run time arithmetic errors and properly report the cause of the error when it can be
determined (the CYBER computer does-not detest certain integer overflow errors). The compiler assists in
the detection of logical errors by compiling code to check for the conditions mentioned above by compiling
a jump conditional on the checked for condition. Rather than generating a jump to a specific error
processing routine, the compiler creates an address field in the jump instruction to a nonexistent address,
consisting of a high order address bit (to force nonexistence) followed by the line number in the program
and the logical error number, all of which will fit into the 18-bit address field used in the CYBER
computer. The resulting pseudo 'address causes the processor to halt and the CAMIL reprieve processor can
then decode the "faulty" instruction into its actual meaning. Encoding the test in this manner saves more
than 30-bits each time this type of test is performed and allows error messages to be related to the line in
the CAMIL source program at which the error occurred.

File Manager

The CAMIL File Manager System is a completely closed rde system (only accessible through the
CAMIL system) and capable of handling many different file operations. The basic concepts of the file
system are: to allow multiple access to files (any fide can be accessed by more than one user); to provide a
structured file cpncept (the compiler knows the formal definition of all the files in the system ,so file use in
programs must be consistent with the formal definition of the tile); to provide indexing, direct access, and

_variable length files in an efficient manner; to allow batch programs to communicate with the CAMIL file
system; and to provide a simple and uncompromisable file security system. All of the goals of the file
system have been met, providing a powerful, i.licient, and secure file system.

Th., basic logic of the file system is contained in one procedure (with nested inner procedures), and it
resides in the CAMEL executer program. Other components of the file system are: the peripheral routine to
communicate with the 844 disk controller, and CP monitor modifications and driver program linkage (to
schedule the special CAMIL batch file manager interface program) to allow batch programs to communicate
with the CAMIL data base.

The basic design of the CAMIL file system is such that it provides a powerful file concept in the most
efficient manner possible. Some of the file constructs were limited from the original implementation in
order to keep the ftle system efficient, but sufficient flexibility was insured to perform all of the"desired
operations. This type of nnplementat ion strategy led to a highly successful and easy to maintain file system.

All but an insignificant portion of the file manager lop' c is programmed in PASCAL and is resident in
the EXECUTER program. The logic is broken into small procedures to perform each of the different file
operations-(READ, WRITE, DELETE, etc). These procedures in turn share other common procedures to
perform operations such as record number verification, physical buffer allocation, and physical disk I/O.
Each job which requests a file operation enters the re-entrant file manager code, and since the file manager
code xectites in user mode, all of the needed local file variables are placed onto the CAMIL run time stak.
Because the PASCAL file manager code cannot be interrupted by another CAMIL job (the PASCAL cod
decides when to relinquish control), no synchronization is necessary between jobs revues-tin
operations.

Because the file system is shared, all current information about system files is kept in ECS,
allows all of the jobs requesting file operations access to the information without the need to reserve
storage space in the run time stack of each job. The system file definitions for each tile defined in the
CAMIL system are stored in ECS,-so that a file request can easily be verified without a disk request. Also
while a file is open, all of the extra information which is needed for an open file (buffers, bit inaps, etc) is
contained in ECS and referenced through the resident tile information.

43 4
0-*

www.manaraa.com

There are three types of files: direct access, indexed, and variable length files (though direct access
and indexed files can be accessed.sequentiaily). The most common type of files are the direct access files.

Direct access files provide the capability of accessing foxed length records at very high speeds. This is

accomplished by being able to compute the physical disk address from any given file address, so that the
only physical I/O required (sometimes none is itthe record happens to be in a buffer) is the actual data
transfer (note: The record bit maps must also be *iced up to 'disk when writing a new record, but the
backup operation is part ofa single 1/0 request). Bedause direct access files allow packing of records (more
than one record per physical block), two physical operations could occur for a write file operation on a
packed direct access file (one to read the physical block, insert the new data, and then write the physical
block' back out).

The indexed files are designed to provide a highspeed indexing method to strut: ed files. They are

fixed length records (preferably small records), and the entire file resides in ECS. Titer fore no physical
requests are necessary fpr read operations, and wily one request (to back up the file an 'sk) is required for

write operations. The typical use of an indexing file is for indexing purposes. The recur associated with the

desired indtx may contain.access flags, status sets, and direct access file addresses. The direct access fill-
addresses are used to associate data located in direct access files with the specific index. The direct acce.m
address can then be used during the processing of data associated with the current index so that all further
file operations are as efficient as possible using computable disk addresses. This approach eliminates the
need for index searches and index blocks (which consume time, space, and disk accesses) 'Without imposing

any real burden on the programmer.

Variable length files provide a means of storing records of variable lengths. They are similar to direct

access flies in that disk addresses are directly computed from the addresses of the records. The main
difference is that one cannot direct where a record is to be stored when writing out a record; instead the file
manager assigns a new record number each time a record is written; Also, it will delete the old record (if
rewriting a record). This is necessary because it may not be possible to fit a rec,Ord back into the same
record position it came front (the record could become larger), so the file manag r will automatically delete

uc.the old record and insert a new one, returning the new record's address, The n ber of necessary physical
I/O requests per record access is at most one per request (none if the record is already in a buffer), since all
disk addresses are computable and the disk driver routine will read in'only the needed number of sectors for
variable record reads. As with the dirext access write operations, backtif of record bit maps is also part of a
write request; thus, only one pause for physical I/O is necessary per operation, although more than one

transfer may take place.

The file manager has its own peripheral routine to handle all of the CAMIL data base requests;
therefore, the disk addresses computed by the file manager are directly handled by this routine. It is the use
51 this special routine which also allows the record bit maps to be stored in the same request as a write
request, thus cutting down on swapping and waiting time overhead of producing two physical requests. The

data path between the peripheral routine and the file manager is also minimized since the peripheral routine
transfers the data directly to or from the file ECS buffer.

Requests from a hatch job requesting a file manager operation are processed identically to CAMIL file
manager requests except for the data transfer portion. When data are to be transferred to or front the batch
program, the CP monitor modifications are called to perform the transfer. In CP monitor, the data are

simply transferred directly to or from tha file ECS buffer from or to the hatch program efral memory
buffer. Thus the data ,are transferred in a most efficient manner between file ECS buffer a hatch central

inentory buffer without any need of transfer buffers or extra movement of data.

For each file manager request that a program makes, the file manager checks to see if the program has
permission to perform the requested operation. If the program does not have the proper authorization, a.
file security error is generated and the operation does not occur. File security is accomplished by
associating a program name with a set of permissible file operations. Each program which is to have its own
sel of access privileges to a file must be placed in the file security list by the FILEEDIT program, A default

www.manaraa.com

set of permissible file operations can also be specified, in which case any program without special privileges

to a file would assume. In this way a file can have a nondestmetive set o,f default privileges so that other
progratns can be allowed to inspect the file without giving specific read permission to each individual

program. Because the file manager operations are defined in the PASCAL compiler is well as in the CAMIL
compiler, the file security by program name also holds for batch file manager requests. Because of this, and
the fact that only CAMIL and PASCAL programs can access the data bass, the security of the CAMIL data
base cannot be compromised by any method, since only specified programs can be authorized to access
data base files, and there are no passwords which can be stolen.

ng System In

The most extensive modifications to the SCOPE central memory monitor program have been made to
allow batch jobs to communicate with the CAMIL file manager system. These modifications are
incorporated into the FtA+I section of the 17P monitor because of the expected frequency of use of the file
manager requests.

A batch,,tob issues a request to the CAMIL file manager by calling DIO (resident in RA+I) which
passes pertinent file information to a batch file buffer in the driver. (The batch job is suspended until the
file manager completes the request, at which time the job is resumed.) The driver then schedules a CAMIL
job which calls the file manager routine to perform the relevant file operations.

The file manager handles batch and CAMIL file manager operations in a similar mariner, except when
transferring the actual data to or from the program's buffer. In the CAMIL case, the file manager can
simply read :or write from the file ECS buffer into the program central memory buffer. The batch case
however requires a call to "ITO" (RA+1 resident) to perform the transfer between ECS and central
memory (the central memory space belongs to the batch job). In both the batch and CAMIL case, however,

the data are transferred between -ECS and central memory only once.

The CAMIL system also-requires special scheduling of the driver, EXECUTER, and the compiler. The
driver must always have the top priority of any job ' he computer because of its synchronous nature. The
EXECUTER is next on the list of special priorities, s, 'ice an interactive job requires a faster response than a
batch job. The compiler must also be given a priority over batch jobs, since an interactive user is waiting for
the results of the, pcompilation. Modifications to the SCOPE scheduler were made to accomplish the special
scheduling requirements with minimum interference with the normal scheduling of batch jobs.

Peripheral Processor Routines

INO

To communicate with the terminals, two channels are dedicated to the system terminal hardware
interface units. The "INO" PPU routine commuilkates between the driver and terminal hardware interface
wilts through central in mory and the data channels, respectively.

One channel is de 'cated as an input channel. The INO routine queries the channel for incoming keys.
When a key is received from a terminal, the hardware will place the key (ong with the terminal number
the key cline from) on the channel. 1NQ will then place the incoming information (assuming no parity
errors occur) into a circular central memory key buffer in the driver. The driver properly responds to the
key strokes, either echoing or buffering, etc., depending on the state of the program running at that
particular terminal.

The output channel operates in asynchronous mode, since the terminal hardware requires output for
the terminals every 1/60th of a second.)The output channel can send each terminal only one 20-bit parcel
each 1/60th of a second., INO awakens the driver to prepare a stream of these parcels, encoded with
terminal number and data, to meet the terminal hardware demands. Even if no data are to be sent to a

'.terminal, the hardware demands at least one parcel to be sent to an undefined tenninal every 1 /60th of a
sec on a.

45

www.manaraa.com

Once the driver has created a stream of parcels to be sent to the terminals, INO reads the information
central memory and then transfers the information over the output channel to the terminal hardware

erface unit. The interface unit breaks down the information and sends the data to the proper terminals.

DA&,

The CAMIL dicta base is totally separated from the SCOPE file system. This separation was
accomplished by developing a new I/O routine which processes all CAMIL data base requests. This routine
communicates with the CAMIL executer through a request buffer which is prepared and monitored by

executer. The new routine transfers data from the CAMIL data base on disk directly into a data buffer in
programECS where it is retrieved by the requesting proam as soon as it can be rescheduled. Thiselinuinated-much

of the overhead and unneeded data shuffling incurred with the CDC supplied software. It also provided

greater isolation between the two systems (CAMIL and SCOPE). The drives used lbr the CAMIL data base

are not known to the SCOPE system,- and the twq, systems are thus mutually inaccessible, except through

programs capable of attaching to both data bases.

Data base I/O requests are handled on a first in, first out basis. File manager (FM) determines when a
physical I/O request will be needed to satisfy a CAMIL, request for data. File manager constructs this

request and places it into the DAB request buffer. Essential items in the request are the logical ,pack
number, cylinder number, initial sector number, the source/destination ECS address, and the number of

sectors requested (for fixed length records).

The CAM IL data base consists of up to eight 844 disk packs. Each pack has a logical pack number (0

to 7) and a pack name. Each pack is considered by FM to be error free. FM sees a pack-as 410(0 to 409)
cylinders of usable space. Each cylinder is a logical set of 452(0 to 451) sectors. A physical cylinder has 456
sectors, the last four of which are used by DAB to replace up to four defective sectors per cylinder., thus

maintaining the illusion to FM that every pack is flawless.

The sector substitution table is initialized by a pack initializer PPU routine, IPK. WK writes and
subsequently reads each allocatable sector on the pack and manufactures a substitution entry for every
sector which is incapable of being reread. WK also blank labels the pack, so that it can be permanetly
labeled by the FILEEDIT program which is used to define the content and structure of the CAMEL data

base.

TMM

The pepheral routine which times the CAMIL jobs is TMM. The EXECUTER tells TMM when to
begin timing its use of the processor and the time slice to be allowed. TMM will time the use of the
processor, continually placing the number of time units used by the job into central memory. In this way,

when the CAMIL fob is swapped out, the processor usage is immediately available to the swapping routine,
and no special call is required to get it. If the job uses more CP time than the time slice allowed, a flag in

central memory is set, which all CAMIL programs periodically check, and the job will voluntarily relinquish
control of the processor.

TMM also updates the current date and time in the CAMIL date and time area's when it is got timing a

CAMIL job. This allows CAMIL programs to directly access date and time information through system
defined variables instead of special procedure calls usually found in other programming languages.

VI. CAMEL AUTHORING SUPPORT FEATURES AND-AIDS

Because CAMIL is a highly flexible language, it was desirable to implement some systeA functions in
CAMIL itself. All system level operations controlling access to the CAMIL system are perlornied by CAMIL
pro rams. User LOGON passwords, systeni file definitions (including security access privileges), program

'liting, and even CAM IL program loading are all performed by CAMIL programs. Because these programs

46

www.manaraa.com

are vititteil in cAMIL, they provide an "intelligent" interface between the user d the CAMIL system and
can be easily updated to reflect system changes. CAMIL programs provide the er with menus, help when
requested, and interrogation of illegal requests.

One important facility is not a separate program but is imbedded in th. EXECUTER rogram. This
facility allows the author of a program to interrupt execution of the program by pressing an "AUTHOR"
function key on the keyboatd. The author key allows him to immediately autopsy the program , look into
the data stack of the program, restart the program, communicate 'with other termh,als, ohnonitor the
activities of another terminal in the system. The monitor.function provides for future access to a number of
interactive breakpointingand analysis facilities which may be added to the system.

The function of each of the major programs used to implement the system will now be explained.

LOGON Program

When the system is running under CAMIL; every terminal is established as either unused or running a
CAMIL program. When a terminal is powered up, it emits data to the computer indicating this condition.
The CAMIL 'system establishes a data area for the terminal and begins executing program called LOGON.
In anything further done at that terminal, it will merely be jumping from one CAMIL program to another,
i.e., LOG ON-PLOADER-).EDITOR-1.LOADER-WSERPROG-+LOADER, . etc. The LOGON program
initializes the terminal and identifies the user by associating-him with his user privileges through his
LOGON ID and security password and information. His status in the system and everything he is permitted
to accomplish are controlled by this information. As additional security is needed, it is provided by the
concerned programs, which protect the data base, and apply restrictions based on security data in his user
records. As an example, certain functions might only be allowed to be performed by certain programs run
by certain people at certain terminals in certain buildings during certain times of the day. In this manner,
multiple restrictions are placed on critical data areas so that penetration of a single person's personal data is
inadequate to compromise system security. Final control is retained by restricting data base access to
programs by name. (each ptograni name is unique) so that if a program could be copied and modified to
remove some security cheeks, it would stdlbe denied data access by virtue of being a different program.

The role of the LOGON program, in this process is to identify the person trying to log on, determine
whether he is permitted access from the log-on site, and apply restrictions as recorded in his user records.
Since the user will always be running some CAMIL program or submitting a batch program from some
CAMIL, program through the program editor, security is retained by the CAMIL system.

The LOGON program also has such puipheral functions as to display run time error information if a
progam must be suspended, display resource utilization factors and display lists of programs

permitted to the user. The successful operation of the LOGON program depends upon a user data base
generated by another program called the user editor whichestablishes user. permissions,

Program Editor

All CAMIL programs are created and reside in the AIS computer. Programs are intended to be
authored on-line and updated interactively, For this reason, a powerful but easy to use editor is an essential
pat of the programming system. The CAMIL editor was inspired by the PLATO IV edit program and was
initially written in the original CAMIL language implementation. It his now been rewritten in CAMIL
resulting in an approximately 50-percent reduction in source program size, although original editor is
retained for use when the ow system is executing.

The editor is intended to allow modular program construction for ease of access without ing
annoying specific actions to be performed to link the resulting program modules. To support this, the
CAMIL system, local PASCAL compiler, and a print program have been written to use or disguise this
modularity as appropriate, thus allowing the user to create modules corresponding to CAMIL or PASCAL
routines or blocks of text. The rditos has four primary levels of operation: program, directory, module, and
xtual.

47 ,

www.manaraa.com

Program level operations are those such as creating, copying, deleting, compiling, eat aloOng, printing,

or checking the status of a program, These are accomplished on an entry page as options available through

single keypresses. The most frequently performed step from this page is .to enter the directory level of

operation. All programs are divided into major directory areas; in the cas4TcyiMIL prog,raids: these areas

are 'corretated with specific divisions of the program and given the names: Shared, Private, Procedures,

Segments, Errors, and Autopsies, Each of these is merely an entry point to a chain of directory pages, any

one of which can contain up to 30 entries and is linked to the subsequent and preceding directory pages.
The directory is presented to the user as a menu of module: names, each witf7171-04er that can be used to

enter the module for editing. In addition, directory level &frictions, such as adding; deli rearrariOng,

renaming, and copying entire modules, .areperforMed at this level. Also'module level print flags can be set

for each module so that selective printouts can he accomplished by the print program. New directories may

be added following or preceding the current page at this level. The user_ will normally select a module for

editing by entering the module nuroberam this page, which moves him to the module le'vel of editing.

At the module level, the user is automatically provided a displayed set of lines representing the

current location in the module. The user can set the number of lines that is seen by default to any number

of lines that will tit on the screen; the system will initially display five lines. As the user moves forward or

backward through the module, the lines that arc displayed are numbered with sinall'numbers frdm 1 to.3 I,

and the user refers to lines by these numbers. Since the numbers are completely relative, lines may be added

or removed, and the system will constantly di 'splay the updated text with familiar numbers that always

appear on the same-lints of the semen-. Since these numbers are kept as small as possible, typing is kept to a

minimum. If the user wants to see more lines than are displayed at any moment, this call be done by

pressing the space bar, and the editor =will double the number of lines currently on thescreeh and add this

many more lines to the display. lutes already on the screen do not scroll or move as in some terminals so
they can be easily read as new lines are being added to the screen, The user can move forward through the

text by simply pressing the "NEXT" key, which will move the current lociation to the line following the

line currently displayed at the bottom of the screen, and. then redraw the screen to display the default

'number of lines.

Commands available at the module level allow entry to a textual level of editing to winch lines may be

inserted or replaced. In each of these !nodes, the user denotes insertion to begin after or replacement:to

begin with sonic brie which is on time screen, The screen is redrawn with the referenced line near the top of

the screen, and with the user cursor iinder the line of entry. In insert mode, the line inserted after is placed'

into a special copy buffer. Editing keys on the CAMIL keyboard allow this line to be copied wholly, word

by word, or let ter by letter into the user- input buffer, along-with any new characters to he added to the

line. Other keys allow thing copied or entered to he erased wholly, word by word, or a letter at a time.

Still other keys allow the line, words or letters to be removed right to left flow the input buffer as though

they were being orased, but then returned to the screen to the user input buffer at the press of another

key. The combination of Oise keys allows existing lines in the module to be copied quickly to the point of a

Mistake from either the left or right direction, a correction to be inserted into the line, and the rest of the

lino to be copied without error. In replace mode the copy. buffer is merely loaded with the line to he

replaced so rapid updating of errors, without introducing new typing errors caused by reentering characters

which arc already correctly 'entered into the line, is possible, In either mode the user can skip over lines he

does not want to change thins allowing him Co easily move throOtt an area containing errors andupdate or

insert after eachline as needed without having to f desi gnu t e with numbers which line he intends to alter

next. Because these keys allow the user to directly edit the characters in lines, these keys perform the
function (it mimerous string oriented editing commands found in more conventional editors. As a result;

the only string oriented command is one with which a module may be searched for occurrences of a
particular string, with optional replacement by another string Iry pr4sing a function key.

The nmands available at the module level allow the user to move forward or backward by thic

iitltuber of lines displayed, to the beginning or end oaf a inodu e, to the lines fojlowing the lines currently on

www.manaraa.com

ecn, or to the followtni; dir preceding module by the press of a single -key Lines may be deleted by
en ng the starting and ending line number, or may he saved inttca "save buffer' and carried to some
otlrl r place in the module or into a different module, program or editor. lb addition, groups of lines may he

left or right a designated number of spaces to align them with other lines in the text; this is very
usef d in the editing of structured programiewhereindentingis often used to display program fistructure. In

all coin ands referring to more than one line, the designated lines are encircled by the editor to confirm
that the proper lines have been denoted before the operation is conipleted, thus giving the user a chance to
chwlge his mind before making a major error,

To simplify program storage, changes made to a module are not recorded on.diSk until the, user leaves
the module, at which time they are automatically recorded by the editor withoutipy explicit-action being
performed by the user, A special escape is provided which allows the user to leaVe the module without
storing the changes that have been made. This is normally used only when some' major blunder has been
made, such as deleting a large block of material by accident, which the user doeS not want to become a
permanent change. If a module is emptied, it is automatically removed from the program directory, and if a
u'w module is being created, it will he auluniatically entered into the program directory at the place:it is
designated to tie added.

Another useful function supported by the editor is the automatic tal?.1111C1:1011. In automatic mode,
the tab -key will indent to the line which is being inserted after or replaced; this is useful for indenting
structmed programs or for -entering indented textual material, A manual mode is also available where fixed
columns specified by the usq can he used when tab is. pressed., this is useful for editing programs written in
assembly language or tor entering column sensitive data.

To assist in the development of st weaned progr4ms, the editor searches tor leading BEGIN and ENI
symbols and the specialCAMIL begin--end characters, When verticalypaired symbols ire found, the editor
will automatically connect them with vertical hilts each-time the screen is redrawn. (Tins may he seen in
the ('AMIL examples included in the appendix.) An,automatic grid functionis also available which will
draw vertical lines at desig,natable character intervals each time the screen is redrawn, to assist in placing
colour!) critical data at metletermined positions whonthe terminal is used as pseudo keypunch maanne
for card format oriented data entry.

Automatic ErrrirMode.
When a ("AMIE or PASCAL program is submitted for compilatioti, the editor generates a request for

the compilation by routing the request into the system input queue. The request includes only the name of,
the Program to he compiled and any unusual parameters which are to be applied. The corresponding
compiler obtains the program source by,,reivling the program level directory, then the module directory
pages, and in turn the source modules glum- the data base. No physical medium other than disk storage is
used to retain the source inhumation. To be consistent with this philosophy, the compilers do not generate
program listing:- as the programs are compiled, hut rather, if an ei or is encountered during compilation, an
entry is made in an error record, indicating the module number, line number, column number, and error
number ()I' the encountered problem. At the end of tile compilation this error recut-ills recorded on disk for
use by the program editor. When the user requests to see the error module directory, the error in odile is
used to read up the module containing the lust errm,set the eurre,nt Line position to the line containing the
error, draw a popiter to the place in the line whore the error Wati dist:river-rid, and display the error number
and an English description of the moaning of the error message at the bottom of the screen, (A hard copy
of this display is included in the appendix.) In this manner, the author need not he it the central site with
the printer to use the system. The resulting environment is much taster to use than a paper' or screen
eqUiVarent of a listing with cum messages embedded in the program text. 'phis IN particularly tole as
programs grow In sire. (The AIS adapt iv model used for student lesson management takes approximately'

minutes to list). Function keys allow the user to request the display -of the next error is needed Anil -then
to go to another module to fix the pi ()Hem, such is an undeclared idNtifier, without cauSing problein's,
Ibis facility combined with rapid partial compilation can reduce ,complete turnaround I less t train a

minute,

www.manaraa.com

The editor also,provides access to autopsy reports generated when a program fails in operation. As

explained in another section, the entire data Context of a progarn is savid in the event of such a failure.

The autopsy program mnemonically dumps these data, and a source module is constructed for each local

and itobal dat4 area and for the built-in system variables for the program. It also builds a directoryfor these

source modules so that ti F user can select which data area to observe in the same way that a Medi' le is

selected to edit when editing normal program sources. These directories are also strung together so that the

user can look at all of the autopses,which have °wrred, independently of Where the prograin may have
"been running within the_ AIS netwoth. In this miniver, field prOblems are returned to the program author,

who then has a descripholl 'of what was happening at the moment of failure, even though the author was

not physically present at the time.,All normal editing functions are available so the author may. search for

desired identifiers or values or may scroll through the autopsy Icioking for someihing -which seems
abnormal. The combination of these two interactive debugging aiai'greatly enhances the usability of the

system, particularly for remote program development.

The editor program, which was written in original CAMIL, was translated into CAMIL in about two

work weeks, and reduced in size about 50(7(. The resulting program is approximately8,000'words of source

(200 lines), compared with 32,000 words id- source code (5400 lines) for the program written in
oriltinal CAMIL. The resulting_ decrease in line size is due primarily to the more efficient syntax and

of CAM IL II, and the additional It ^kluction in code size is due to a 35% improvement in source

alto density CAM II_ iI editor format.

file of, information. used by the
editor, This program allows an authorized
administraliye control;; most be applied,
persons, but this is,entorced by the- user oil

the Editor

N program is yreated by another program called the user
n to create anflrikdify records for other people. Naturally,

rolling who has the ability to extend this` privilege to other
which is the sole program that can edit the user file.

Me user editor will not be explained 11 depth, htit it contains the necessary displays to establish',

survey, delete, and modify user records.

File Editor

The (TAMIL irrterictivciv through the program FILEEDIT. With this prograin,
the definitions are interactively treated, edited, ;id deleted. The resultant de definition file is used at

system initialvatiou time to load s stem tile inlotInation into WS.

When creating a new file deli 11 time file editor' solicits information (file type, record size,

size, number of huffctnu, security p number of records, etc.) required to define a file. Front the
(dimmed inforMation, the tile edit I) Of[tpUtCS the total disk storage space eqiiired to hold the file,

whieli is then Used by Il rogram whet t ;rllt calirrg, physical disk space for thedile

When the user is satisfied with the life definition, physical disk space for the file must he allocated.

The user may optionally direct 'where it wikbe physically located (by disk pack and csylimiers') or roo

allow the hILLLIAT program to bad the required disk space.

The Ede edit program also provides for general-- disk maintenance and disk allocation updates. Disk

packs which have been Mihail/12d by the 111; routInc can lie labeled by the file edit program, making them

ready for use in the TAMIL like system,. Also allocation [naps- for each disk pack can he inspected'and

changed ley the IIIEDI program, This allows the status of each disk pack to he examined prior to

allocation of a new rile.

www.manaraa.com

Auto_pay Program

A CAMIL program in execution presents a pattern of information on a terminal screen which the
author can observe to partially determine whether his program is executing correctly. Simultaneously,
variables internal to the program, but not visible to the author, are undergoing continuous change. It is
often very desirable for the author to observe this internal state, but this is quite difficult to accomplish,
since normally the program would have to be temporarily modified to display these data, along with
desired screw output of the program. If would be highly desirable to have a tool which would display
information at the request of the user, without requiring modification of the program. It would also be very
timely to apply this tool in the event of an unanticipated failure of the program during execution.

The dump is ouch a tool but has until-recently been as crude in form as the programming languages it
has served. The post mortern dump implemented by Sandmayr (Reference 6) has provided dump-like
information in a mnemonic form for the simple data types supported by' PASCAL. The CAMIL autopsy
report extends the basic notions of the PASCAL PMD to include all user structured data types, such as
packed records arrays; files, sets, and classes. The CAMIL autopsy can also be taken any time during normal
execution of a CAMEL program- by pressing the AUTHOR key and requesting an autopsy.

When an autopsy is-requested, the state of the program in central memory is written onto the data
base for presentation to the autopsy dumper. The dumper will use compiler generated descriptions of the
address space of the prograth to produce a mnemonic dump of the data area of all routines active at the
time of the autopsy. It also generates the calling sequence' of active routines and attaches all of this
information to the program directory. The author can use the program editor to examine this information
at will. The defaUlt autopsy covers all variables in the program, but compiler directives allow the autopsy to
be selectively omitted for items in which the programmer has no interest.

Print Program

Because the character set for the CAMIL system includes 124 hard printable characters, a special
printer chain is needed to print all of the character graphics used by the system. This special chain
relinquishes some redundancy of frequently used characters in order to make positions available for the
nonstandard graphics (print slugs) used for CAMIL. The absence of these slugs causes the printer to run
more slowly, especially when CAMIL programs, including characters Which appear only once on the chain,
are listed. To counteract this factor, a print program was written which is capable of reading CAMIL
directories and source modules, and printing the full character set on the printer in a unique two-page
foruiat.

Lines in CAMIL modules are never more than 60 characters in length since the AIS terminal screen
allows only 64 characters total, and four of these are used by the editor at' the left margin for line numbers
and spacing. The line 'printer, is capable of printing 136 character lines across a 15-inch-wide continuous :
paper form. To make the most of this combination, the print program print's two images Bide by side on

,..each sheet of line printer paper. Because the print time for each line is determined primarily by the time
waiting for all needed slugs to pass over positions where they are to be printed, printing'a wider line has
little effect on the printer speed pompared to the need to wait for the full printer.chain to cycle by each
line. The resulting printout is thus twice as wide and half as long as the normal format and has the further
unicide property that it can be burst and each page folded upon itself, producing a book-like format which
is much more convenient for program documentation. The major operational benefit of this format is that
the printer runs almost twice as fast on these normally slow listings and uses half as much paper.

The print program also prints a program summary at the end of the listing which cross-references
modules to the page of the, listing wpere the module was printed. Pages are automatically numbered at the
bottom and module line numbers

is written in PAS L and attaches to
kid headings can be printed or deleted at the request of the user. The

theprint program e CAMIL data base through the batch program
interface described in the file manager section.

5
55

www.manaraa.com

VII. CONCLUSIONS

The language described in this paper is a workable usably implemented language. Itseflecti qualitative

improvements in CAMIL derived from experience with the current operational (mplementation of the
language. These improvements were sufficient to allow a more tium 50% reduction in the size of the

program editor which has been translated into the new format as a test case program. In addition, the
rearming program appears to run both interactively, faster (subjective observation) and consume less

computer time during execution. The program is also significantly more readable due to the extensive use

of the CAMIL user sentences and improved file structures. We feel that this saving is typical of savings

which could be realized if the current system was converted to the new language format and that the
greatly improved compiler performance would facilitate such an effort and future applications of AIS to

new instructional areas.

A pivotal question which arises when such an effort of this type is contemplated is whether the

benefits of such a _conversion outweigh the costs in time, effort, and interference. with the operational
environment. If the AIS load should increase, major improvements would be needed to handle the
additional load imposed upOn the computer, demandini either additional hardware or improvements in
software. If such an increase was to occur, an alternative to an increase in hardware perforniance now

exists, along with qualitative improvements in development facilities.

In the event that demand for MS computer services does not expand, or if it assumes a different

direction away from the central, research oriented form that is currently implemented; we% have nevertheless

gained significant knowledge of the Vplementation approaches to use in future deVelopmenbi and of the

types of interactive aids which should be included in future systems.

REFERENCES

r. Wirth, N, The programming language PASCAL. Arta 1r:format:ea 1971, 1, 35

2. Ammaim, U. PASCAL-6000 compiler.

3. Sherwood, B. The TUTOR language. Computer Based Education Research Laboratory, Univ

Illinois, Urbana, Illinois.

Stifle, .1 The PLATO IV architecture. CERL Report X-20. Computer Based Education Research
Laboratory, University of Illinois, Urbana, Illinois, April 1972

5. Krivacic, R. Reihnernent and implementation of simulation system. Masters Thesis, University of

Colorado, Boulder, Colorado, April 1978.

Sandmayr, H. PASCAL post mortem dump program

52

www.manaraa.com

APPENDIX A: PROGRAM EXCERPTS

Several program excerpts are Included in this appendix to display something of the CAMIL
.envIronment to the reader. Unfortunately, the extreme resnonsiveness cannot he captured on paper nor by
a sequence of frames showing progress through a program.

1. Display of a syntax error as produced by CAMIL editor automatic error display mode. The editor
user presses a single key which causes the editor to read up the module containing the next error and show
him an English deicription of the error, which he can then correct.

-ment p i urn _,pace : 8 8

draw from 10 (.0' , 400 t 400 100 ;

draw to 200 100;
PLAN 270 ,' 400, 300)
on

on I i

e 3 1, co 1 5 wr i to 1 arF-!:e

i i, co I 'wr

Enroute spla siaed

53

www.manaraa.com

2. A simple typing drill proga
must correctly copy:

which ac randomly selected words'on the screen which the

Segipents: TYPO Space.. 747

CONSTANT INTEGER 1 ineS4-5.,1:4Iods4-6, vocal-.7):4-44;

ARRAY[0:vocabiOr STRING [8] wds-r"puppv',1enriAli'don

clusteri,igranolal,erase','zulu',1quirk','aqueous
7. 'mauve"'muddlei,ijiggl',`epoxy',1paraffini,'gr6ss'
6

7

a serum' 'proton,'silicon'.'tribble1,1clone',1cutl'

9 i n , d 't imid' pervade' , 'mediate') ;

10 VARIABLE IN1 EGER.4,j,1: ,er f $,chrs,start; STRING [0] w;

-11 PACKED ARRAY[lines, 0:words-1]OF 0:vocab wdinx; CHAR -tar;

1Z

13 1r [EwicT] 'DO;. .starti-SYS,CPOTIME; ,71--.:=.4-0; chars 0. e ase;

14 FOR i .To linf-!sDO,.

15 ROM 0 REPEAT words DOFOR j FRO.
1 +-RA wdinx[i,jl4-k;

.
.

17 [wrte.wdJki oil line(3x-
c...D__ (j x.1.0+2) ;

18 TOR-i TO lins DO
19 FOP CFROM 0 REPEAT words DO

20 w4-wd[wdinx[3].; chars4-chrs+LENGTH(w

21 roR 1- UNTIL k-LENGTH(90.-
22 accept rep:with [noarT:ow,nceaps]; char+ufkl;

23 IF JiKEYchar,THEN
24' write char _:fl line i i. 3- col x1.0 1+k)

25. ELSE-
[unwrite w on 1 inei.3xi-- ,col(Fx1.042 ;er 5 4mrrs+4;

27' UNTIL J- KEY=' DO z..c.7:ept rep wi,th[i-Kx9.rrow]

29 on line 31- , -col 5 uhtij BADM
30 00-L':/ped c11 ars:3,- chars Oith er=r -or5-

31 .r..PUTIME,-.",(CPMTIME-5tart)/4.096/chars:6:2-
eypre5s"

www.manaraa.com

3. Original CAPAIL, code for a simple rn th drill'program which randomly generates loath problems
ad cheeks any wrong answer agathst the

displayed operands:
bility of having performed the wrong operation on the

Pr r 1

11.11P.,KP 1,
2 DEFINE 51 Ii A

ei.747___
opse ect ,o)

(41 Zps

M Erase Screen; At Col 10, Line 5 Wr
'WelcoMe to MATH. D

REPEAT 10 TIMES Di,)

ERIN ON HELP DO (lir i te ans 'Pause)

Erase 5,treen; At 1ol 20; Line 30. 'Help
9 14-RAND(12; o-PANDOx-3.

CASE opselec1 (IF
11 (1 I anso-1+91 2

12' JUDGE
BEGIN Erase Line 10;
At Col 5, Lire Write With Magnitude 2;
Write opropsele 1; Writer With Magnitude 2; Write
Accept At Col .1 Line 10; try-try-1;

END WITH

,14

15

16

17.

18

19

20

21

22

23

24

25

26

27

28

29

30

BEGIN'

ns1(Write ok' For-1 Secondh;IF try -1 THEN
1(Write' no did you add?' For 1 Seconds;
J,FLAG.1-FAL;E);

l- rl(Write ' n did you.

J0FLAG.--FA SE);

1 r1(Write ' n: did yoU multiply Seconds;
,I,FLAGFA SE);

1 l(Write ' n, did you d ide' For 1 Se Ids;.

J,FLAG*-FA45E)
END

ELSE
-EGIN
IF tryS0 THE Ans J,FLAC4-TPUE;-

1 'Write ens Witl5 fla nitudeWith 4; Pause For 1 Seconet)
ELSE Write no Try main.'. For 2 Seconds

3 '7ND;
4 END;
5 Erase Screen; At Col 5, Line 20 Write 'Number correct

Write ks At Co1:5,Line 21 Write 'Number missed
7 Write 10-oks; PauSei

4. C 11, II code for the s e math drill pro

59
-55

www.manaraa.com

Procedures': MATHDRILL2 Space:,

1 CONSTANT ARRAY [4] OF CHAR op +I, -

2 VARIABLE INTEGER 1,r,ans,opselect,-k5;

4 eras*; on line 5,col le until [NEXT] write

5 "Welcome to MATH DRILL, Press NEXT to start";

6 REPEAT 10 DO
7 IF' [HELP,BLUE_BACK] DO write ans until [NEXT];

8 erase; 1+-RANDOMx12; r4-RANDOMx12; op;7elect+-RANDOMx3.+1;

'9 CASE Opselect
Eli ans14-r; 21 an 41 -r;. arsIxr; 41 ars
write "-HELP- available." on line 30, col 20;

on lire 10,col 5 write 1:2, op[opselect]

JI.LOOPLIMIT4-3;
JUDGE accept on lire 10, col 14

ansl[ok; pause for 1 sec; ir JpCOUNT.1 THEN oks oks+1]

1+/-1[no; write ". did you add?" for 1 sec];

1,-r1[no;

11

12

13

14

15

16

17

18

19

20
.21

22

23

24
25

write " did you subtract?" for 1 sec];

1)-(ri[no write did you multiply?" for 1 sec];

li-rlEno. write did you divide?" 3;

ELSE
riF,J COUNT-f,3 THEN write " Anger " _ns:4.for 2 sec

LELSE, no; write Try agairin sec

erase; on line20,col 5.write "Number correct

Number missed .",10-oks urtil [NEXT]

5. Listing forasimple`HANGMAN"larne programWhich requires that the player guesslettersused

to spell a hiddenvord. Each letter guessed which does not appear in the word results in partsofthernan .

being drawn u heisliune!
Prc,icedureA: HAN(Impm c_.

I (The HHNQlrIN ame, guess the iett

TOTIST6NT
-INTEGER nurnofword a29, x+-20T5, 5.)125;

5 HFRAY[ainumawors] OF STRING(6] -words.-,

Cimisn', 'canoe', 'computer', 'seagull',

'mangrOve, 'eloquent', 'camel', 'tortoise'

'aircraft' i 'sunshine

'pumpkin', 'violent', erudite',,

"'helpless'; 'diligent', superio 'lDea

.'geoes.)111

12

A ti WWIABLE
14 INTEGER 1,righ ,missed.select:

15, SET OF 0:numafworda used;

1p" ISET1OF 'a':'z' charsinwd, usedchars;

'17 STRING [8] word;

56
60

www.manaraa.com

aae1 right4-0; missedo-0: charainwch-i); udedchars

21 REPEAT-mmofwbrol3x3 UNTIL -.(belect'i used) DO
22 seleCt RANDOM numaword5: I;

23 uiledo-usedo [SeleCtn wordwOrds[select] 1
24 FOR i TO LENGTH(word)D0 chartinwdo-charain 1

:s25 on Line. '5 Sized Write large: 'Tire Hang0a.mGiMe1

26

27

2e

29

30

Draw the Gallows)
connect x/250.v, 0A-100, x+250,5)-100,

.:N.2io,y+30u, 5(455,y+300, x-#55,5) i275;

JUDGE accept 'rep '41i th [marrow, nocapal

Ai :.1Z. 1:

[

IF J;kEY_- use ;hairs 1HEN
[on line 25 co 1' 10 _for I sec wri - You 1.0s,

J,FLAG4-FAL;i]; .--...

ELSE --: .

uaeidtharsusOchars.(JokEY11
IF j,I,EY E 'charsinwd THEN

FOR . q TO 'LENGTH (word) DO

IF JIJ:ETkword.(1) THEN .-

[uitite J,KEY on line 2i, col h l'!
.

F right-ALN1,64(word)IHLN

'C[

piret. "you win" for. 3' Sec un
orr line 25, col -16; GOTO again

-;J,FLPG.FALE
ELSE

,
mi

,
aseoi-mi .55ed+ I ;

CASE missed OF
11:draw from x+5,5) t5 to x+55,y+50; (hell: le

21 draw fromx+105,5) k5 ",to x.55,5) +50; (right le

31 draw from x+55.y+50:to)4+550/446E; (trunk)

41 dram from x455,5)+158 to x+5,5)+I0b; (left arm)
51 drao from x+55,5)±10 to x+105,5) +100; (right arm)

61 circle 10 at u4.55)+180 eccenti Reit,/ 20; Ahead)
71 21.:J.543,5) +190, .x.60,5)4190; cey.3)'

clots .,...+55,5) 4.185, x+54,5)/104,

-A+55,5)#184, x+56,5)+184; (no _

91 n e.t .,.+51,5/4.170,,,x,453,y+168,,x.+57 168,

x*59,y+170T (mouth)

4

9

0

A 2

13

1 4

10

13

.19

2.0

22

23

24

25

3U.

c

6

.7'

EL

5,+275 to x45-, 4-

I write word;
"You Hun

on line 20, co
:.n:line 25. col

_GOT()

3 sac until

[_GOT() again;..

J,FLAG44-10L5E;

(NEXT];

to "Not a letter" a O on lin25, col 10;

57

www.manaraa.com

6. A single it a taken,,during the ecution of the game. The user ie tryin
`beastly" but is very close to being "hung."

58

www.manaraa.com

DIX B; CkMI MACE S

ollowing charts represent the syntax of the CAMM II language graphically:The'explanation of
notation Ls included in thi- language. Description section of this report. The ,iollowitig charts do not

, .

moremustily expltdri semantic retiiktions of the language, which are explained maze fullyproughout the

www.manaraa.com

scaly
constant

Scalar
constant

www.manaraa.com

www.manaraa.com

Wm,

itittr

104#10
==#. Bill lid =i titl

WO,

sip

Ylitymp, fitii

www.manaraa.com

tei

011

if ffkpl

Its.1

ftmfaff

,#.p**F4
.4#7

.0 io

* U S DOVE MOEN

