S . PR - . ¢ . ok LaE
Loew 2 ¥ R B i B j’.
. ' . L) a o

| | ' pocesmey smsoxz .\ - . -7
5 167 122 - *gf ’ s ' il,lii L1 ‘
v n . Lo —
~ AUTHOR . Gi:dn:t, ¥dvard. : ' -
TITLE . .+ Proqramiing lLanguage: CANIL II- plgngntitian anﬁ
- Evaluationy R ' A
INST ITUT ION Alr Porée Human. Resources Lab., [DEE! AEE, Celoa
. ' tTechnical Training Div. Pt
SPONS AGENCY M't Porce Human Resourcis Lat., Ergﬁkarlrag Tﬁxaa;
REPORT NO ~ APFRL-TR-78-U5 R W PR
PUB DATE Aug 78 R P
wore . . 67p.: Appendixes may be ia:qinaliy laqible dua ta

. 11ght and broken type
AVATLABLE PROM ' Superintendent of Documents, U.S. vaernnanﬁ Printing
S Office, Washiancn, [.C. 20402 1671 956/76) :
g;g 5
RO RS PRICP®, MF-$0.83 HC=-$3.50 Plus Egatagep' . -
DESCRIPTORS ', #Computer Asmgsisted Instructicn;: *Computer Managed
‘Tnstruction: Canﬁﬁfer Frogramss; Comt Effectiveness.; .
*Indiruttianal I-@rct;ngntiEIngtrnct;cnal Systaema;.
Military Training; Prégram” Fvaluatign* ‘Pthraling

’] - Lanquages t . T,
IDENTIPTERS ~ *Computer aﬁffvara- EASCAL ' _ ’}%_ T ,’
AESTRACT : S AR

k A rairﬂlqmén*afian of Etnputéf aisistedflanaged .

1ngfru:fian language (CAMIL) for qualitative and quantitative-
improvements in the goftvare is’presented. The reformatted languaye
i{s described narratively, and major cceponents of the system software
are indicatad and Ai‘scussed. Authoring aids and imkedded support.
facilitiwas are also described, and key CAPIL prcgrams used in- the
dave lopmant are Aiscussed. The resulting system cffers a method ﬁor
future improvement of the Air Porce Advanced Instruciional Systen

~ (ATS) computer support system vifhnut FIPEﬂ&dfurE af aﬂﬂitignal unds
for computer support. “(Author) ,

- [1

.
»
t!iiiiiii!tit!iiiiii#i#tttiiitti!iiiiiﬁi!ltii!ii*i****#!!#!i!t!#ilii*iﬁ

‘! g“\; . N A . 3
i!!!iiiiii!ii!itititititiiiiiﬁiiiii?t!!!!i!iiiii*ii*##titi!!*#**#tit*ii
- Eanrgduc?ianq supplied by EDRS are the best that can be made x
* from the Griqinal document.

Q ‘ . . [¥

~ g

(-

AFHHL.TH;’B.‘B : ‘ : n-ﬁ; pocyMEs -ﬂnu’!u HEPRO. o

. DUCHD EXACTLY AStNERIVED FROM
‘THE PERSONOR @

12A1HOH ORIGIN- -
ATING IT # ViNw Om OPINIONS.
STATED P# CERSARILY REPRE. R
L SENTOERICIA i& OMAL INSTITUMOF -

" EOUCATION' ius \ 3 - p! :

) GUAGE-CAMIL 1 :
* . . ki g ‘
\ U : ; 7 ‘ ‘
| © ¢ ‘ ' . v od
j id N‘
.:s oA
N SR
) B E X August 1978 . . -
s Final Report for Period Februa y 191'7 TMiy 1978
i] S | | ‘?
A : N '
, . _ 3 4 L4 N
J ! ; 0 : ‘ T :ij |
B .) “) ‘
U" L e n) "
) . ' P«ppmv‘ul fr)]f_p:]bllc release; distribution unlimited L L. [
4 R . : v (o o -
o - . . \ ' Ty
c rey L RN BT
" T AT A Lok
- R iiiu_)! uu- i wi \?1;?34‘;?{’??‘; ‘
. __ __ A I - i _
%‘ E L
- . 5 ‘ V o - . .) N B ‘i) o V)
\V|) AIR FORCE SYSTEMS COMMAND

(\\ ‘ : o BREZ)C)I(S AIR FORCE BA;SE TEXAS 78235
\‘l ¥ . . '1 .

3

b -

S .. NOTICE

When U S. Gcwemment drnwingn, spetlﬂcntlgm \)r other data are used
for any purpose other than a definitely *related Government

procurement operation, the Government thereby ~incurs no
. 1esponsibility nor any obligation- whatsoever, and the fact that the

Govemment may . have formulated, furnished, or in any- Way,;uppligd

~the sald drawings, specifications, or other data Is not to be regardéd by ‘
“implication br otherwise, as'in any manner licensing the- holder orany

other perhnn or corporation, or conveying any rights or permission to

gxnufnctum use, or sell any. patented invention that may ln any way
related therem, _ 7 . b

*) b s

Thjs final repart was submitted by Technical Training D:

.Force Human Resources Laboratory, Lowry Air Force Basef?C |
80230, under projéct 2313, with HQ Air Force Human 1

Lﬂb()talﬂfy (AFSC) Brooks Air Fnrce Base, Texas 78235,

" This repcrt has beea reviewed and clcafed for Qpen publlcatiun and/or
‘public release; by, the appropriate Office of Information (OI) in

accordance w;th AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by

DDC to the Natiofial Techmgal Information Service (NTIS).

§“»

%

This teghmcal repnrt hdS bcen revu:wed and is approved fm' pub]icstmn

MARTY R. RD "KWAY, Technical DlTECth ; .
Techmcal Trammg Division .,)

RONALD W. TERRY, Colonel, USAF

Commander '

W |

ERIC

Aruitoxt provided by Eic:

1 . ’ \!‘ * -
P 4
g Un;lu;ﬂlﬁcd ’ ‘ \ ‘ ' = o -
5Eq‘lHIT'|" CLASSIFICATION GF THIS PAGE rwnm [ng- Fn!nridj * o
o ~ READ INSTRUCTIONS
REPDRT DDCUMENTAT'DN PAGE R EEFGRE EQMFLET[NG FORM
| REFORT NUMBER 1 Tz. GOVT ACCESSION NOY, 3. REEIFIENT S CATALOG NUMBER =
i .
[AFHRL-TR-78-45 | v . . o
i o T o -
4. TITLE (and Subtjtie) . N Twa-E OF REPORT & pemgu COVERED
PROGRAMMING LANGUAGE CAMIL II: IMPLEMENTATION “Final A
AND EVALUATION & :) . . 'Ehru.njy 1977 = May 1978
B i 6. PERFORMING ORG., REPORT NUMBER -
- i) iy . ‘. \ ! . - .l B
7. AUTHOR{®) . — 6. CONTRAACT OR GRANT NUMBER(#)
- Edward Gardner , ; . \ [
. ‘ A
9. PEHFaﬁm'Hs'nﬁGAm:nmn NAME AND ADORESS A TP E’ﬁééﬁw EﬁLEME&Tﬁ PRAOJECT, TASK.
" Technical Training Division® . ¢ » o REA 8 WORK UNIT NUMBERS
.Alr Force Human Resources Laboratory , : | -61102F
Lowry AJr Force Base, Colorado HUi'}D . 2313T4D7
T CONTROLLING OFFICE NAME AND ADDRESS T “REPORT DATE
HQ Air Force Human Resources Laboratory (AFSC) : August 1978
Brouks Alr Force Base, Texas 78235 - 3 NUMBERGF FAGET .. -
. 66 .
Mé mam’r;:nmm:- "AGENCY NAME & ADDRESS(I{ differant from Contralling ﬁmc-) 15, SECURITY CLASS. (nl thia report)
Unglasslﬁgd
i5a. jEt:gAsschTluN/mcwnaﬁmms‘
S5CHEDULE
T6. DISTRIBUTION STATEMENT (of this Repary ~ T) — - -
T 7 ' .
~ Approved for public release; distribution unlimited.
1 B
i7. |3|5TF1|EuT|aN 5TATEMEruT fnl Iha uh‘llr.ﬂcf antared In Block ;‘D ifs dl”gr:n ',E 1 '7 arf)
. . .
18, S\JISFL,EMENTAHV "NOoTES - — - -
. . . ' _) ‘ .
= . * i T \ ' .)
'9 KEY WDRDE (Eﬂnflnu- an reverse sids Il neceasaly aﬁrj idsnilfy by ;lm‘k nurﬁber) - R .
languages . o computer woikload ., high-level language ‘
CAMIL language © . . computer programs - : com puter software
PASCAL language o program performance . - structured programming .
. computer services 7 computer assisted instruction " programming language conpilers .
camputers v Lamputer managed instruction . o
20, ABSTRACT (Condlnua an reverss alde If necessary and Identily by block numbar) —

A reimpléfhentation of Computer assisted/managed instructidn language (CAMIL) for qualitative and
quantitative improvements in the software is presented. The reformatted language is described narratively, and majot
components Of the system software are indicated and discussed. Authoring aids and inibedded support facilities are
'aan described; and key CAMIL programs-used in the development are discussed. The resulting system offers a

t of the Air Force Advanced Instnictional System (AlS) comiputer support system
\\m_hnut expéndlmre nf additional funds far Lumputcr support. ' - ' ’

% \) $ - ! :

Moy A o]] o
73 1473 Ecimion oF 1 Nov 65 is oBSOLETE: Um:lassiﬁf;d

: : q

_ SUMMARY "

&
4

Objgﬁive Lt

The ;y;tem so[tware in the Alr Force - Advanced - lnstructianal System (AIS), while providing

necessary - classroom support for -courses “at Lowry AFB, did not meet original design performance
objectives. In addition,, due to cost and other impacts, full features of the Computer assisted/managed
instruction language (CAMIL) implementation were not realized in the initial implementation. The
- objective of this work unit was to, determine whether a different approach tq the implementation of.
CAMIL could meet“brignal performance .objectives and also mrplcmem the full language and autharmg aid
system whilé s,imultnnenusly affermg improved mmntsinabnhty .

Approach

The CAMIL language was sllghtly modified to improve compilability and programyreadability. A new
compiler for the language Was iniplemented, based upon top-down recursive ana% rather than the
table-driven approach used in the ‘original gompiler. The system support program was rewhitten in a high |
level language, and the system was configurdd to run with a reduced level of interaction with the operating -
system. Several service functions were trar
parallel processing, and key CAMIL progra
was to be- performance compared with the original system in détail, but th,us has been
' change in operational reqmrements

s were. rewritten using the new system. Thi resulting system
eferred due to a

" Regults . .
Over 95% of the system has been 1mplemented in the high level language PASCAL fcnr ease of

' 'Dﬁgmal and several pDSSlbllltlES remain for further Speed énhancement. The new system provides for an '. ‘

elaborate group of authoring aid functions while imposing no additional burden upon the author, and
numerous furthér programming aids could be added to the new configuration. The résulting CAMIL

programs appear to run from 5 to 20 times faster than theif predecessors, but this relationship has not been

rigc:mus!ytested ds was originally intended. ,
¢ - :

Com:lusmns i
A path for camnderable quahtatlve and quantitative improvement. in the AIS syttem software is

available if :md when systém lgadmg increases. due to demzmd fer AIS computer servu:es i H i

oy

ferred to peripheral processor routines to allow for greater

- PREFACE |
| | We would like to ‘acknowledge the support of the AIS computer operators who
, Helped us during the long nights when this work had to be done. We would also like to
i ank Harold Montgomery of the McDonnell Douglas Corporation for his help in

nderstanding the intemal operation of the existing AIS computer operating systém. We

specially thank Lt Col Roger Grossel for his suppart in initiating this work unit and for

" hig faith in our abilities to improve a highly complex system with the limited manpower
© and resources available in our organization. S

'
i

L4

W

L
*y

TABLE OF CONTENTS

—F. . : . - [) . . . P!B
L Int’mdgctian T T |
" Report Organization e e s e e e e L e h e e e e 7l_
Language Description . o . . . 0 . o .o e e e e e e e e e e 7

Ml CAMIL Language Overview . . 4. . % . v oo vm e i it i e B
ITl, 'CAMIL Language Description L I)\,., o
"ngramStructufe}..:.“i.i T TS S -9

. DataDeclarations e, e i e e e 12
DataDefinitions e e 13
Expmssfumg,ﬂf.i.@..!g;. e [1
ExecutableStstemgnts...“,,i.!.i..,,”“!-i.!.”..”...;‘@ 18

: . .

Old Fayorites fkf_lﬂ
MadlfiedﬁrlmpchdSt;ﬂement Formg,00 19

. ~File Operations A |
Senten;’eLibrary R

v, CAMILCGmpﬂéergram .
e ImplementstmnFaLturs C e e Dt e e T 32-
Narrative Description of the CAMIL CDmpﬂer ‘ 32

. Data Base Inte:—ffagc‘ 33
Compilation Driver . 34
Lexial Scanner 34
‘Declaration Compiler 35!
Statement Compiler .. :) 36
Expression Compiler 37

V. _CAMILExeéﬂtiﬁnSu.ppDrt System e e 39
Terminal Driver & 39
InitialﬁatiﬁnlSEctian:..,g,ii””i.i.,.r.'i,»”.,',i,f,;i,—-i 39
KeyInputSection o0 oo 40
Communication Section . . & 40
Framing Section e e e e e e e e e 40
JobScheduler oo 40

Batch File Manager Section - 41 .

3 ? - ?

,Exggu.tgl"i.-g,-,-'-ig:.n,i‘!iiask!’i,--‘ingsr;i.-g'ji!I_ilx.c!l 41

. : 7 ;
. Syitgr’n MGdE s 4 & = % 3 & & 1 ¥ - :i D L : - LI R 5 o PR .s s "i 41
- User Mode !42

File Manager e
Operating System Interface . . &, o 0 . 0 o0 44
- Peripheral Processor Routines I« o oo e o B]

VI, CAMIL Autharing_S'uppgig Features and Aids . Lo L Y T

. LéGQHQFngraril l.‘\ 47

Program Editor e e

© Automfatic Error Mode ., P
Trodlser BAIEOr '+ « ot v e e e e e T80
FIIEEd}IEf:ﬁ 50 .
" Autopsy Program , 51
Frmtpmgnrn 51

) % . o - ‘ .
v i, Conclusions+ ™% . v aee s e e e e - ¥
.Régcwnccs 52
\ Appendix A: Program Excerpts . . . 53
Appendix B: CAMIL II Language Syntax Charts e e / 59
1) . »

" LIST OF ILLUSTRATIONS \,

. e 4
Figure e . g N -\ Page
1Examplc'%yntnx(flnft!*8

. , '
. f,_\,,-d
2
!
v

-4

Q ' ' .

ERIC - - B

Aruitoxt provided by Eic:

!

Q

FRIC"

Aruitoxt provided by Eic:

\ K !. e
! '\;-_) ’ - 35 *
L " PROGRAMMING LANGUAGE CAMIL 11; ‘
o lMPLEMENTATION AND EVALUATION

I INTRODUCTION
"The lmmﬁlm dclcribed in this documcm ling been implemented in suppnrt of a large scale effort
withh] the United States Air Force trnlning community to apply computer technology to improve technical
traiing efficiency. The nmjor effort in this program has been to apply individually sssigned self-paced
earfiing methods to fnur high-student-load trainjng L[)UI'!E! at an Air Force technical training center. Within

\ this enﬁmnmem a large scale computer has been programmed to manage the instructional programs of

approximately 2,400 students. by tracking their performance and eapabilities and assigning appropriate
Instructional packagﬂ based upon their past and predicted performance. The computer also performs many
of the admlni!trﬂﬂve tasks created in such an environment, keeping all student records necessary to
properly \manage each student individually. One of the availahle instructional media will he interactive
cbmputer assisted Instruction (CAI), also supported by the central compnter.
" In order to implement the above software, the implementation of a contemporary programming
language capable of servicing both student management and student instructional terminals, as well as
software development, was 'dEE!nE(LJiECESSEina Before the decision was made to develop o new language

and/or.implementation, current languages supporting similar activitics were reviewed, After determining’

that such an integrated attempt at computer assisted/managed instruction had never before been attempted
_on the scale of this effort, it was also determined that suitable software had not been previously develdped
“in support of such an application. The most closely related efforts were a large scale computer mariaged
_instruction (CMI) systern at the Naval Air Station in Membhis, Tennestee, and the Plato IV effort at the
Computer Based Education Research. Laboratory of the University of Hlinois in Champaign-Urbana,
Although both were outstanding exainples of their respective types of progradfs, it was felt that neither

offered software capable of supporting the type of integrated CAI/CMI environment being sought. For'

these reasons, g ‘was decided that a contemporary programming language suppnrting the best current
programming prictices would be spcx:lﬁed and implemented to support the number of students anticipated
in the prﬂjcc(ed Air Force training.environment, This language was identified as CAMIL, a mnemonic for
Cumpuh:r Assisted /Managed Instruction Language,

Huse hoth the original implementation and the one described in this repnn are referred to as

. CAMIL, the two langunges have been referred (o as CAMIL 1 and CAMIL 11, This report will for purposes of

brevity use the term CAMIL for the second implementation since our purpose ifprimarily to describe if
rather than to compare the two implementations. In the few plich"a in Whth the two are being compared,
suitable dlscnmumthm will be made, :

CAMIL ;.m be described in customary terms as a high level, gcncr.nl purpose,_ interactively
implcmentcd ALGOL like, extensible programming language. The syntactic format of the language is
generally like that of ALGOL, while the-semantic features of the language generally represent extension and
generalization of the facilities of.current PASCAL. A major addition to its capability is the inclusion of an
English-like statement called a “sentence”. composed from “words” such as “verbs,” “prepositions,” and

_“adverbs.” New words may be defined within the prograim, effectively allowing new statements to he added
)_0 the language, within a predefined flexible syntactic format, Another major facility added, which also
u’ppm(s ienlcmc‘% is liu’ wppﬂrt nf multi-«flcmcm prr(s'siunﬁ or g("mp-i of v |qu ‘%mh lnplu may d]lpL ar

typcs %llﬁh as an’ays or er:nrd:. Thr‘: user miy .\l'iu dm..l.m: new pn:ﬁx mﬁx or pmlhx n[m.nun lm LXI\III\F
or user defingd types, or may exltend existing operators to new user defined types. The language also
includes a large standard library df defined sentence words allowing Iughly self-documenting programs (o he,
implemented by relatively unskilled programmers,

{}s. . R

— v ‘ L

O

ERIC

Aruitoxt provided by Eic:

=

CAMIL is compiled Inter absolute hinary code for the Control Pata Corpomtion ((DC) CYBER 70
series computen, The compiler is written in PASCAL and implements a process called intelligeat partial
compilatlon, All CAMIL programs are interactively.edited by an on-line mothilar editor wriiten in CAM
which cooperatively structures CAMIL programs for imodular compilation and leaves fufomation for the
compiler to vae I aVolding unnecessary compilation of unchanged inndules. ikewise, the gompile
generates ghd slores crom-reference information which it wses to determine rippling effects of editin
changes In nreber (0 cause tecompilation of affected mudhdes. Using this. techniique, it is not upisyarto
recompile a 5000Ine program in several central processing unit (CPUY and real-time seconds since mch
input/outpat (10) amy processing can he avpided i a typleal :;mnpiiﬂ,(inh sltualion,

In order (v facjlitate analysis of stident datagind generation of petindic reports in bateh mexle,
CAMIL has beep jmplemented using the wne addressing conventions as PASCAL. thus allowing comipatible
dmcrlpiinniul"dzﬂ;\ collected on line to be :n;:zly;r‘il with PASCAL programs even though packed records or
arrays may exinf in the CAMIL data base, An intertace Package allows any batch program to call out the
same disk 1/0 servlces available in CAMIE to access the student data bast accumulated by CAMI . programs
running n real fiene. b oaddition the CAMIL system allows programs to be detached from their initiating
tenminal and rig i a ”h;ltkgrnlllill.i mesde at 2 service limbed priotdty (i provides Tor data ‘analysis anml
procesany in CAMI witlmutlin'- essanily reserving a camrputer terndnal. To facilitate geneal li%ahihty) of
Hgé systens, the CAMIL compiler and PASCAT coanpiler both integlace directly tnthe P,#MII fatn base so
thit rapid virmaremds of compilations can be achieved without using the system prugier, fhus allowing any
termingd .in the systeny negwaork to b used Tor soltware development Fhis authoring environinent
['“"'i”h”vﬁqﬂ very linpau!:mi' part ol the CAMIL. anthaning, system and has g direet impact on the
produckvity of the CAMIE programmer ‘

It wrider o k(”t"p ihe compler and Lnpnage desenption el |l*|;|l(‘i" e Now chart desariptive
et
desigmed 1oss rapiad compilation with as few lorwand teterences requited ay possible. Procedines need not be
torwiard decared and Jabeley need not be declared arall. The sumple Calthongh semitically powerful)
syl tesalts g gy comprle speedy ol abost 1800300 fnesfsec within declieations and about 100
linew/see w il eevecytable attdments on the CYBER T7UT6 (Control Data (300 With the partial
comppl tion technngie aentosied above s this obtenesalivan eftechve compilanog pates pregter tan (000
Inu"’}m o, Vior recovrny " patticnlady eood sitfce the conmpiler cinaborn cornpilation n abwest any
medule 1t s pets lost and contimue to othee modules without the sometines devastatmg ettect cavised by
misrate heed sy mbsols g Teas pateptlieses or HEGIN E N i,

Fov o darify nmie of the exanples ineluded m this paper o we s bnelly geplun the hardwae
envitonmend i which CAMUI oxyrentes CAMID s anplemented moa Gtk cental ey CYBER T3 106
processor and wpvicey g cuent “hetwork ab S0 Mypmavos Plisina Bisplay tennaaly thicngly o shyitat
felovisim s omtnie qhons petseork ompally desipned ar the Compoter Tased Fodycatpm Resgi b
Fabonatony of the Diperaty of oo CHeterenee) The netw ark aban mcbndes pen Uintetlpent™ stinfent

atnape erit teginals (optical toes reader ponter, PDE O] whichnse aconrpatible protocal o the

came conimmieations hardware. The netwerd
Iardwire, AL diplas o |,i|'\«’|m'(| At these terminals Yot be prosdused by AN ;mu'[,ﬂ]\\ fwis CYHEN

TR A TR ALIERI TN (RUASH A are enaesdat gl et priosity to prowide syie hrogrons dat

toesprandible to aver 100D Py oaly sittun ilus baisic

comtal oty
transder (progfam DRIVER Ceveonted each P of e ol ed interactive esecufion of CAMID propnty

Aprogram I XECUTER, sotuptanly reteasiny the O Gy when CAMIL requests e satstied). Theantal

CAMIL nplementation cuneatly wovace. appresuagtely V00 wnhtary stdentss primanly thronygh CMI
wrviees b stuUe t ntgisaeetnent Termn®abs whobe e ive temnnals e currently owed prmanty for daty
< ¥

Base tnangrement e tiwre develepment ol ek anthonmg Uhe Liruare Jdee rihed oo this doenmmient

repfesents o ntope aidvipeed version of the Linpiiage I!,Lxl‘qpan[mn the vaqrher experiepeoe ol was mitended 1o .

pfprove the Laape qualttpively sl oo s mproveaients i piphementation efficiency ind
' - ;

athoriog tuitagouie] e) :

1ol developed by Witth in reterence Towall he used o dirvs pihe the CAMID prammar. CAMIT has heen

i

[
[
¢
Ve
a
f
E
€
=
u
-
"
. %
LI RS
7
/

ERIC

Aruitoxt provided by Eic:

-
-

quﬂﬂﬁmhuhn

This report has two "\I!Jﬂf !uh‘icgu the first emnmpamng the language and the second vmumpa!smg
the mﬁw;rl elements needed to Implement the langrage upon the CYBER compuiter.-We have trled to
present a narrative ducﬂpﬂnn of the language dnd implementatinn, ruhar than a formal 1anguage reference
manugl, In order to impart to the reader an underntanding of the efffilrequired 1o implement this type of
software and of how the lahguage and implementation relate to ge other comtemporary Ianguages and
implemenialoms. What we have found most difficultto plme into words has heen the impact of the
Interactive jand “dynamic authoting envirgpunent implemented hy this wqfem upon ourselves s
;m)iﬂiﬁﬂfén We have viewed this project fram the beginning as the construction of a motivating and

- snabling tool T programmers and courte dovelopers which would allow the tapiil development and

evaluation of interactive campiter assisted insVinction and management M!hnnph the pidtential of suchan
environment hags not yel hv:f'n elrmnmtnlﬁd we now have the '~1h1|l'\' 1o make !mh,g\ ervironment

availahle. T TN e

L:n(unlyi Description

Thin section of thlheport will posvide a genieral descnption of the CAMIL Tangiages It is intended for
a readey whii has a workang Bamilanty with contempaotary high level |vmpr;mnning languages, such as

AL GOL PASCAL, ar TOVIAT Tns geaderahoialt easily tevapnize the purpose for lmlmhnp mual ol the
dﬂrﬂhvd featured in a lanpuage uu;h a8 CAMH | therefare, very' famuiliar data tvpes or statemente are nivt
described i great detm!l Constructs anique to CAMIL are described natatively in greater detail so that the
teader will he able to jelate thess fo fqcilines which paght he gepresentert by ather «nnfdnu 5 in oithey
languages or which might ot be gvailable n pYher Lanpuapes - -)

The CAMID syptax as desordbed by g wrl ol gramimag arts using the haste style.used hy Wirth
(Rt‘"i‘if‘nu“ 1) to ‘lh\ ribe the synbie of PASCAT . No Jonual production or tedu tion, prammar ewists for
the CAMU I implementation, wﬂmunp the fact ””'f’ top-down, recumive descent comnpiler is ased
unplrmrul the Linguage A edog |||l|| H\i‘lm II tyr the onganal € J\MH implementation” Uli\ljlill.‘l‘ ahout
A00 productions, some of Whih lnné‘\|mnv| P teatutes whied have g vet hedn imple mrnhxl in the
arigipal systenr. this indicates the compleaty which iy be amiicipated whep o thr thivf‘n Bt

] nrm;‘ﬂlrr is nsedd o jmplement ",‘v'“”' v Ligage, such o as CAMI . In uwn\,mllﬁ“il, the syntax “hart

description for the current CAMIE i very compact and s readily related o the compiter struetiee fon
maintenance purposes, although o daes not e the piaranteed rcl,mnmhip that a reducton prammar has
with n‘\]'n(tr the connpaler bnothe cae ot CAMBE T the prammar does conie *-;nnnl lu a llnylmrl m winch

lTI?hI}?HHV(an be pesalved by I:n,L iy Ahe |-| e ok nat et

Within Hus netation, an oval boog 770 always et to sapiend o reserved wond in The Lanpuape, such
wnnh are baglt fronn upper case letters apid e mteny e ded by g bottomaap lesee al scanner anil L]IS%I“{ o} an
sinple syinholy - Kesepved words nnd paafsation e %l oo csgonadly suinsomded by st pointed bos

whichodpeated i the dines tions A prodicnon !Im\ o thes et oed swhiichosodentie o mome iy

to the syrihd s e Aty cectmpula hoyos wsed to contam the pame of anodbier hyrt, wytly the

Aimphcalion Bal some conguler ot wall T e irsvely called toocadbec t the aton mapaled v phe gaiie of

the hoy U] The hines with dirowhe vbeayd e the e hion al pi;nllh tion flos ol the clnts Lo orelate
thas notaton foa e Podue tomme e cvples Betosw deate eoqvalent Backie Naue Toonanl

sritay chart exanple .

Hoo b Nane Lo -
= -

¢ Aconatant decl> 182 CINLTANT <typenpec |ist>

Y \/}tw%n?c Alst> - <typa: aG Nt § Ctypespec nair»
o s ttyoasy nalr> -
palr> - <typespac> <dect nalr tlst
lint> 11z <gpcl oale Vlwt> 4 <aoec| p-ili‘l
: cdec |l pale» 5 : ;
<laant it ler > « ccanstant exprans, lon

il

Q

ERIC

Aruitoxt provided by Eic:

\ " \ J - ¥ ¥ i
. - o ! : g)
\ [
L3 ,‘
Equivalent Syntan Chart: ; .
. ’ o - '7 5 o '_ E : v_ iv s Lo
T PPN, I “wew | . [contant. |
gl CONSTANT o typespec |- ™ w [T e T
= Yy . =) : =
. " . ¥

_—

" Figure.1. Example Syntax Chart, _
The full syntax chart for CAMIL tras been reduced to two pages and this repfesegts a oonsiderably
more compict and upderstandable description than an equivalent reduction grammar. Since the subtleties

of languige semantics are more difficult to present in an organized and. pictorial manner than’language

syntax. exampies will be included in certain sections of this report to indicate how language structures have
been used (o implenient built-in facilities, many of which are'ggtually coded in CAMIL.
. N - :) o 4

L 3

. 4 1. CAMIL LARGUAGE OVERVIEW
. . oo : : . :

Mot \lnné’ jages require’ that a program be described syntactically such that key QI_rESErvgqiwmds
indicate the majot divisions of the propram structure. In CAMIL, a program is always entered, edited, and
executed’ on-line, All prograis are stored in a-direct access file system with a set of directory' elements
describing the modules representing the CAMIL pr‘ugnum Majar sections of the program are represented by

sepante dircctory chains. A program directory entry is used to link to the sets of modules which comprise

" the CAMIL Program: alf diredtory entries are automat ically created and deleted as the user adds modules to

or deletes modules from the progeam. Any CAMIL program consists of one or more.of the following types

of modules,

SHARED daty x,,d:n%\-p.‘l}{hnl,'inisqu but addressable by every executing copy of this program :
PRIVATE daty —globa) insscope hin‘} a separate allogation is kept for cach gxecuting copy of this pragram
PROCEDURES Creguisively‘callable subroutines _) K v

SEGMENTS —sections of codé :which ¢an be branched tof/from any segment or_procedure and which
g normdllyconstifule major parts or sections,of the CAMIL program

& =

CAMIL. contaips nnf’y ‘uim- (jclkﬁl!inn;llp\tvﬂﬁi one level for predeclared, built-in data and sub-
routines, a plobal level of dipa accessible from imy segmeny or pmécdurci and a local level of data within
any procedife or segment. Only one’segment may be exccuting at any time, but there is nD'sp{:i,:ifiL‘ limit to
the nuinber ot procedures whigh may be recursively activated at any time, While this is more restricted than

CPASCAL, ik substantially simplifies many author and user problems which might otherwjse arise when

asynchronous features ot the fanpuapare usell. (These are explgined later.) - : .

. s - e e S . i) . { i . s

SHARED whd PRIVATE modules are used only to contain type and sturag&dcclﬂmtmns and cannot
be, exceuted. Execution of a ("AMIL program begins at the first line of the first segment in the program
irgetory, alter the Last line ot a sepment is exccuted, control transfers to the first line of the following
sepnient; the program ends when it is specifically exited by an exit function or when the'last line of the last
sepsment iy executed, Control may also be transférred to any segment by a “GOTO” to the naie of the
“chosent sepment. ¢ '

Procetdires are not executed unless specifically calfed and will retumn control to the statement fol-
iwing. their call unless a "GOTO™ to some segment is exceuted within the procedure. An escape to any

segrnent pesults i an escape, trom all procedures currently aetivated ‘and a réturn of all local storage

T allocated for the curenfy active procedures and segment. CAMIL allows the program author to also define.

asynchrononsly active “function keys™ in the program which will transfer control at the user’s initiative to

places desipnated:by the author, Thus, while the execution sequence of a program is determined by strict

L3

tiles OF the Tanyuage, the actuab path taken through a program can be as flexible as the program authpr

¢ wishes to allow, .)

H g = ‘. o ,:.

-
w

O

ERIC

Aruitoxt provided by Eic:

CAMIL pmgmms-can comnunicate with cach other throagh severa possible méns, Two ditferent
executions of the same program can transfer data through STARED data modules o1 tinouygh the CAMIL
data base which is a record oriented, direct access file systent. Sevetal ditterent CAMIL progroms canalso
communicate through another dype of SHARFD data module called SYSTEM SUAREFD which must e
defined at the system level as part of a special CAMIL program contunimy the sluned data moduales. Any
two authors can also communicate in real time thiough 1 duiect messaye tacihity between termmals. Other
fagilities allow a program author to exccute @ prograin in small steps, mtenictiveld antopsy o progrm on
exgenting s propram, amd frap execution errors, alony

request, monitor the display of a student wh

"with the comiplete data situation at the point of fatlure.

F

M. CAMIL LASGUAGE DESCRIFTION

Program Structure

CAMIL consists of twa distine® but merged parts, the core Linguage and the extensihle Languare - The
core language is penerally compiled directly into machine code which implements its meaning . the
extensible paft is mainly implemented through built-in ot user defined procedures, which supply senmantics
to sentences and (ggcm!cd nperators, All syntaxis fixed, but within the extensible part of the Tanpaye it
rather flexible, The core language supports basic types such as integer, number, chatacter, logcal, stung,
aid textual displays. From these basic types, mote complex types, possibly - contammny multple

components, may be defined by the user.

CAMIL makes x distinction between INTEFGER, which may be used as numene or as it mtonnation,
and ‘NUMBEE. which is assumed (o be a real number and subject to the usual side-ettects of truneated
precision machine arithmetic. CAMIL is tolerant insits conversions Between these types nnd also when ot
compares internal numbers o responses entered by himuans, who are venerally fess precise than oatimy
point arithinetic units, CAMIL supports a 25 2-character set. 126 of which are penmanently tonted on the

terminals and system line printevand 126 of which can he forted within the interactive terminals within an

B by 16 dot raster pattern as fﬁlc author desires, Steings are allowed over the tull 252 characten set, and
special construct called a “wordstring™ can be two-dimensional, allowing @ complete sereen of data to be
written with a single write sentence. .

CAMIL supports RECORD and ARRAY stiuctured types and also allows the author tospecity that
they be PACKED insofar as reasonable for data space conseivation. A ate normadly mdexed by
INTEGER expressions or user defined pinges of memonic values as in PASCAL . Ln CAMU however, the
CASE variant of PASCAL is generalized. any field may be o variant feld, and the case selector tield s
automatically set by gencrated code whenever a recond 1s cotposed as o multiclement expression. This
important distinction atlows the compiler to pass type data to the executing CAMIL program and will be
explained in conpunction with the sentence extensibility feature whivh it suppoits. Unlike PASCAL,
CAMIL allows multi-tlement diterals to be composed, this allowing ARRAY nd RECORD expressions
ather than forcing the user to explicitly assygm cach tield of ecotd ot an array, This is particntaly
important when ¢ombined with other aspects such as OPTIONATL fields i uecond it allows g user to
define sentences completely in CAMIT which are substantially more complex than the typieal read o wiite
statement and which may be written with an arbitzary number of parnneters and moditiers. CAMID also

naintains definitional identity between composed expressions and the actual parametes lists of procedunes
and also between procedures, formal parameter lists, and record defintons. Thos a procedure can be
considered as an operator defined upon a record detinition, mud 4 procedure call can be considered as
prefix operator acting on a composed expresston. Infix and posttix operators aie an niedite extension of
this idea which provides a umitorn basis for operator cxtensthility implementition.

CAMIL supports a ditect access data base thiongh several simple file operators. Al hles e shared
among all CAMIL progiams and iy be opaied aumultancously by any CAMEL programs peimttted access
by a file security system. Programs are by name permitted to perfor specitic ile operations oo desipnated

- : y 1 .
A)

files. Operations supported allow individual records to be read, written, deleted, or apdated. Records are
automatically reserved while being updated to avoid the problem of two ditferent executions or programs
updating the same record. Files may be accessed by index or sequentially or by direct address. All files are

structured as files of some specified type File dentifiers can réter ta'either the current data contained in

the central memory file buffer o to the assocated file sequence stored on the disk, depending npon
whcthfr i(hé C{;mf“ mn Wthh (h(- idcnmicr appfars’ mmlieﬁ a n‘tcf(-im- to data ora ﬁlf upcra(mn‘ A singJe
oy dg‘lefgrsiu‘ml as in thv—]‘;\,.‘1(M w ll H. upd;nu!. rewrnitten, !;nd eleased. ;\H hlL: upu.nmn statcmcnts ;\lluw
tf . an BELSE elause which is processed nstead of the file operation in the event that the file operation cannot
he successtully completed Although maximum file size 15 specified when a file is defined, the actual
number of records @ the tile s dyvnamic and the presence or absence of a particolar record can be

determined.

The .mulm H-THEN-FLSE statement is supported by CAMIL and an additional statement is added

Wt targippert asvichronous mterrption ot the normal program low hy the user if programmed by the
author. The aothor can usa TF-DO statenents to provide an asvachronous transfer of control to the “DO”
staterent in the event that the nser pressés one of the functinn heys listedin the “18"" clause. This feature

allows the author to make o preat nomber of options available to auser without having to check explieitly

tor then at any time Certatn “hultan™ canditions may also he handled vaing this feature, such as file

errurs, svstennt ternination by the aperator and processing erms.

The WETH statement trom PASCAL s implemented, as is the ubignitous GOTO statement. A form of
the GOTO statement 14 pryy wed which combines the GOTO and CASE statement funetions. In this GOTO
CAST torm, the selector expressivn transters contiol toaselected |Hul statement, but branch instructivns
are not pencnited at the end ot cach cases T tesults i a bebavion similar to the computed GOTO
sLatement while retuminy the st tusnal tarm of the CASE statement and achieves the semantic etficiency
which i certin sihuitions 9 compnted GOTO provided CAMID b extends the CASE statement to
nulmh an FUSE CLinse which allows o dosine to the set of passible vatues of ahe selector. The familiar
FOR, REPEAT, and WHITEE staterments of PASCAT oe combined into asingle iterative statement allowing
optionat-selection of any oi 4l ot the above possibilities and also the BY increment, somehow lostin the
franstiion from ATGOL o PASCALL An iterative case like statement, called the JUDGE statement, is
allowed and provides tor the collection ot i mput trom the user, the comparison of that input with
possible inatching antcipated answers, execution ot a conseguent in the event of @ mateh, m execition of
an optiona FESE cosaie condition it no mateh s tound, toliowed by resolicitation ot the response when
noonnateh s tound Many Jiftesent pissibilities of action e easily specified by the author due to the
Hexability of the response aceeptny sentence, The JUDGE statement is highly usable in mny situations in
which tesponses are solieited from stindent nsers and was detived trom the TUTOR Tanguage (Reterence 3).
The RETURN stitentent has abso retimned and proveles o needed alternative to the labels which otherwise
crop up on the List statenent of o procedire i those coses where stiuctined propramming does not quite

suttice to expiess analpontin. . \

An nportant featore of the CAMIE desipn s based upon !\‘];c of CAMID statement called
sentence. The syutas fon the sentence s bult on sevenal paits of specch commonty used insimple Foglish
inperative sentences. The syntas allows the anthor to reartanye the paits of a sentence'in a manner which
nuthes sentantie sense w boplish T thas format, verbs advs oo prepositions, and objects (ex pressions) can
be teaitanped i the mgnner miosd conventent to the tser oot attecting the meaning, of the sentence.

Thus a seritence such as
wrifta = on tlne Lbycol % ftor 5 <sec
wonlld execote esactly the sanie b it sere wiitten

tor 5 sec write x on tlne 10ycol 5

10 {

ERIC: | Li

Aruitoxt provided by Eic:

JUSt a8 it would Fave the same apparent meaning tooa homan elserver reading Both forms, The user can add)

new verhs, adverbs, prepositions, afid also operators, which fimetion as ddjestives i appearanee, by adding

procedires which tmplement the meanmyg of these words and detine acceptable combinations of verbs and

prepositional phases. In the (";\‘:Hl mnplementation, tenminal hardware dependent VO s predetined
: v within thes factlity dunng compier intiabization . tias remeving PO from the cor Tangiape and providing -
hughly readable DO statements 1t s hoped it this 1vpe of taality may offer o warkable solution fo the
problem of authorng jeadable proyrms m langoazes which st be taitored 1o meet the needs pf particular
cquipment. '

Proceduies amd fiunctons may also he called uvmy conventional paameter listss Nooresttictions are
placed on the size of the abyects retimed by Tunetions in ander toadlow support of arbittny user defined
\ types s function results. Operators defined by the wset aie tredted as lunetions of one (prefix, pustiix) o

two Gntny) opetands dand produce o value paable moany contest mowlhich o computable expression is
Alowed The execuition ot a sentence tan achivatwon ot the procedine ot definition tor the verb ot the

sentence and excdutes as eltivrently as ans nornl procedtine.

The apernfion of dasivnment 1 hully snplemented sinee it has been extended to include literals of any
tvpe Additionallv, the wser v explicity “elieal” hetween size compatible types by Ucasting” an
\"\Ph":ﬁ!«g;l g another tvpe T ooty nachine dependent, sonfielimes egrettably necessiry operation,

et be clegrly imdicattdan the CAMIL propran and implenented with sinimal overhead, The resulting
Tenpression provifes exphicit notice of what musd B reesanined if the propram e omoved tooa ditferent
CAMIL pnplementanion
- The Hotion of 4 NAME e an attibute ofd varable or tecord field Glows g umform treatment ot this
concept within the binetaee A NAME tehd within o tecord or pacameter st s conceptually identical tog
NAME varalsle anoa ot data areas The norid astpniient aperator s nuede tmssarent when NAML
dentiticrs are used, sinee the aanimption s dways oude that the teterent ofan iden. - 2iis alwavs intended
when an pdentiticn wowsed, unless otherwise speetlied - Thus names need not be deretferenced explicitly a5 n
PASCAL . An additional artow operator == s mplemented with the maning ™ 8 sy mahe s poial o
what v s pomtiny o’ o thos oanner o NAME parameter to g Procedure is treated exactly as o NAME
plobal vanable o as o NAME tiehd sithin o recond Stomge nay be dyiagnically allocated within a program
exeenbion thiough the se of o MAKE operator winch allocates dhata inan area with lifetime

covtesponding to the Titetime of the pormter sith which it is atfiliated

CAMIE inplenients comprle time resolunon ol constait expressions which reduces the size of
propram code and allows computations to be mtroduced mto constant mrtializations. This has hidden
Benelits i that constaints such as 237 or TS 10T may be stated aecurately at compile time yet appear
o familian metation to the user T atse alfows PACKED constant composed expuressians used tor imitializa-
fons o he packed at compile e, thos avording penaation ol the codes niecessary to do this which ane
wsnally Bt than the pesaltine expression The tollowing operators are availuble in peneral between the

uidicated 1y pes ol opetands

Anthmetie Adeition . subinaeton, real divisien, nteyer division, infeper rennander, exponentiation, and

~ neyation. these are sdetined between INFRGER and NUMBER operands and aeturming
INTEGER amd NUMBEIR resules \

Fovieal Unron, intersecton, ditference, wotd shilts e the et and nght direction with zero patt and

end wround carry forns, and Bitwise complenient of words, these are defined between

INTEGERS e produce an INTHGE R gesnlt

Set Uhnon, miersecton, shiterence. nd complement these e delined hetween campatible sets.

Stimy Comeatenation amd mfis sench bebween STRING aperands and between STRING and
CHAR operamds

Kelational Fquabity ad mequality: between compuanible types and elatonal operators hetween pairstol
mont 1y e and et menbentng Pomter dentiey between NAME apeiitds, as well as normal

cepiiality betseen ther reteienis

1f -
Q ‘I‘J

ERIC

Aruitoxt provided by Eic:

Conversions: Upon assignment bc(w::e all reasonable combinations of basic types.
User defined: Any operators dLthblL between any kind of operands if the [Ll.l(l(lﬂ&hlp is definable using °
. the above ()metll[‘s upon the components of the user defined types.

l)am Declnmtmns

TYPE, ,DN.E:TANT,. VAR!ABLL, .md NAML.

A TYPE declaration is merely a convenient way of associating a complicated data description with an
identifier so that- the identifier may be substituted for the more complicdted definition without typo;
graphical error. Either a TYPE identifier or an explicit data descripfion' may be uscd whenever a *“typespec”
is indicated by the CAMIL grammar. A typespec must be nssuuatcd with any data used by the program,

; and the compiler will ¢check to insure that only semantically meaningful operations are attemypted between
data items actording o their type.

A CONSTANT declaration associates an identifier with a typespec and with an ini(ialféed, unchanging
. value. Constant identitiers niay be used anywhere in place of the value with which they are associated, but
their value cannot be changed during the execution of the program, Their permanent, unchanging value

must be stated in their declaration.

A VARIABLE declaration also associates an identifier with o typespec and a storage allocation which
can contain an ohject of the indicated type. An initial value may be indicatéd for the variable as part of the
declaration. The time of allocation of the storage is the time at which the variable is initialized, thus the

follawing initialization times hold-tor the indicated class of variables:
SHARIED When the first program referring to the shared module is loaded
) PRIVATL Each time a new user hLHns to execute the pmymn (evan though someone Ll%L‘ may alrcady
N he executing the same progrin)
PROCEDURE At each activation of the procedure
SEGMENT Whenever the segnient is activated - : e

I no initial vahue s specified for a vanable, the associated stnmgu will be cleared (zeroed) at the time
ot activation,

A NAME declaration associates an identitier with a typespec and a pointer which can only point to an
object of the indicated type. An occurrence of 4 name variable in any context causes the name to be

- dereferenced to the corresponding nh;LLt Storage is allocated for the pmn(cr when a declaration s

encountered, but not for an object of the indicated type (these are created dynamically) and no initial
values are alfowed for names. None variables are initialized to NIL references at the times indicated aboveg
for variables.

Declaration syntax is independent of the type of module in which the declaration occurs and is
indicated in the CAMIL syntax diagrams included in the Appendix, The following examples were excerpted
tm_m the CAMIL programy,editor and are offered without senuntic explanation at this time as sumples of
data declariations.

Examples:

CONSTANT .

INTEGEIR buffer_slzer255, maxmodse237;
ARRAY (dt101 DF STRINGI11] modtypes
(:Q?Tm?ﬁfﬁ— *Shared Data®,"Private Data*, "Proceduras®
. *Segments®, ‘Job Caras* ‘Haln Block‘,‘Inﬂuf Data“®,
- ‘Texjt’;“Ham‘*ﬂ;‘;"?gﬁcfighs‘):
12 .
O) . 1 O

ERIC - : -

Aruitoxt provided by Eic:

TYPE - &
0tbuffer_ slze BuFFEERANGEv
0itmaxmods MODRANGES
0t63 IDCHARSS
0t2¢15=1 DISK.ADOREEBSS ~
p12+13=-1 JULIANTYRPES
0¥2v16-1 ADORRANGES
PACKED ARRAY[101 OF IDEHARS PACK;DNAHE;
PACKED RECORD wa
9EGIN o oo
PACKEDNAME modulename; ')
: DISKADDRESS srcsbbjslvi . .
- MODRANGE headlingend;
JULIANTYPE updtdate;
11240 celtlnumber; ’
AGDRRANGE srcglze,aﬁjsiza,ivs;ze.basaaddr;awﬁaddr

END MORECORD;

VARIABLE .
INTEGER ‘ b
grid_starts+1,
LOGICAL ,
lnSEngPEEGlelEp

Inspect_onl y«TRUE
" PACKED ARRAY([32) OF 0133 5§re2ﬁllﬂ25k(1 2:

grld_spacingeS, nbr_grid_Illines;

39495y 27%0) 5
NAME : ' S
" MORECORD current_module_ leECTQFYI ‘ '

Data Definitions

Language Tokens
The tokens from which a program can be composed fall into traditional Latﬁgﬂnes ThiSE basic
! elements are’ reserved words, identifiers, literals, and punctuation.

.

Reserved Words ' _ _ <
The following list of upper case spelled reserved identifiers are identified by the CAMIL compiler as
built-in delimiter tokens in the language. They cannot be redefined by the author, thus they will always -
have the same meaning in any CAMIL program. The role of these words is to clariy the structure of the
program to the compiler and to the original and subsequent authors of the program. The list is presented at
this time for reference. The words are reserved in UPPER CASE Gnly but some:of them also appear in the

¢

s language as predefined identifiers in lower case.

IF DO QF . BY
TO END FOR ' SET

OWN THEN ELSE : CASE
FROM WITH GOTO TYPE
NAME VERB PREP FILE
BEGIN ARRAY WHILE UNTIL
JUDGE REPEAT PACKED RECORD
RETURN SWAPPED\r VARIABLE CONSTANT
OPTIONAL PROCEDURE f

=

N idennjlfrs .)
;' : ‘ An identifier is defined as a group of upper or loweér case lattegs dlglts or underscares The first
* character must be an upper or lower case letter. The compiler only attaches significance to the first 10 of _
these characters and ignores any additional ones. An identifier must appear on a single line, i.e., an end of ')9

liné signals an end of identifier to the compiler. Identifiers are used to name data itemns, mndule§ an/d
locations (labels) within- mudules . 7 . .
Punctuation - s .

Punctuations are used in CAMIL as separators for the purpose of program clarity and as operators or
grouping symbols. The following general uses are described for punctu@tmns

€} : Braces enclosing comments lgnored by compller

() - Parentheses used to group elements ot expressions

[l ~ .Square brackets used to éﬁCIGSE Index exprassjons-

' » and Ilteral sets - ' 4

V. . Semicolon used fo ‘separate statements

Colon used to visually separate ltems such as
tabels and stafements, or to denote an ootlonal
data ftem Ln certaln sentences -

. 'Shorthann*werslans of the reserved words

’ *BEGIN® and *ZNJY These characters disofay,

- on the terminal scraan as cornars " and L
and are automatically ¢connected by the program
editor with a vertical line whlch serves to .
emphaslze the nesting structure of the nrogram
v while encouraging neatly galred Indentation
- Asslgnment operators
zpugs2x$>-va€ [0gical operators
¢=u/%t // Math operators

wune - Set operators : S -
(AN String operators : - '
- Quotes used to dellmit screen messages

. Quotes used fo dellmlft character strings

Operator used to denote refarence fo

fields of records
" Synonymous with the constant 3.141592654
. An operator used in multivatued expresslons to
denote that a partlicular value [S to be
repeated within the exoression

. . Declmal polnt used In expresslon of declmal
fraction

. Used to ldentify a nexadecimal constant

3 . uJsed to lLdentity an octal constant

718 . Several other pieces of punctuation commonly
used In Engllsh, but not assianed any sopecial
syntactic meaning In the CAMIL (anguage

Detailed uses of punctuations are shown in the CAMIL syntax charts included in the appendix.

il

Lﬂ‘érﬂls . o _ e
! The CAMIL language provides for the rapresentatlon Dfllterals ie.,self- deﬁrﬂng constants of all basic
data types, suppurted by the language The types and formats of these items ar; o

. o S
LOGICAL?® TRUE FAL;E ‘ . ‘ ;‘ ' -~ : :
INTEGER? ‘ddddddd . {diglits 0..9} L N
- ’ ddddddddd Coctal diglts 0.7}
fdﬂddddddd) Ehéxadeclma! dlg“’s piig!AQ «F}
NnuMBERY . . dddddddd L o
- ddd.dddddd Cdlgits 0..9 max ot 10 slig diglts}
' ' . ddddddd.
= CHARE: - "c¢*’ {a slngle shaﬁacfer In quotes}
STRINGS CcCECCCt . €0 'to 120 characters [n guotes)
POINTER? NIL {means an undefined r'e\“et“e"\‘r]\\E
HDRESTRINGS: : .) I
"The raln ln Saaln falls ‘ .
: 1 mainly on the . : ' b
= o pltain®™ © . fused to display -data ‘on terminait
; The above .constants are limited in accuracy cogfesponding to the accuracy of the A1> colnputer by —
* the following rulesé i J _ ‘
I. No integer may be deﬁnéﬁ with a precision uf informatjon denoting more than 60 bits of binary data.

The compiler limits octal constants to 20 digits and right justifies fewer than 20 digits in a field of
zeroes. The compiler limits hex constants to 15 digits and right justifies fewer than 15 digits in a field
of zeroes. The-compiler limits decimal integers to the largest value which will fit within 45 bits of
_information since this is the precision of the AIS computer multiplier; the value of this largest integer
is 21451,

No number may be defined with more than 10 digits of decimal precision. While this is leés than the
AIS computer provides, it is consistent with the accuracy abt;unable after repeated arithmetic
operations of functions. No number expression may appear as'a constant or be computed to exceed
appmxnmatély IDTWS Numbers may be sxpressed m suennﬁ; notation as cunstan?expressmns in

b

3 Wc:rdst,ring,s are two-dimensional chunks of character mfc,)rmatlun used to place information on the -
display screen of an AIS terminal. Any characters except the double quote " may be used in the
wordstring. If a wordstring is broken across more than one line, the first word of the next line will be
left justified against the left margin in effect for the terminal when the message is written (Jeading

+ blanks are ignored th lines of a wordstring). There is no specific limit to the size of a wordstring.

_ CAMIL supports data types of the above literals through operators and through facilities for
mmpuundmg the above types into aggregates or indexable groups. On simple scalar types it also allows the
limitation of attentiorn to subranges of these types. The operations between these types will be explained in

N the section on expressions; the groping mechartisms will now be’explained.
Record Grouping

- CAMIL allows certain values to be grouped together and optionally gumpressed for minimum storage
utilization, This grouping of heterogeneous item types is called a record or packed record. The definition of
vooa recntd must inlgude names for all of the ﬁelds within the n:cnrd and indigatg the typﬁ of esc’h ﬁeld

repn:sent more than one’ kmd of thmg thmugh a type Df ﬁeld Lﬂlled a vanant A varmnt selector field is .
associated with a variant field to designate which alternative is in effect at any time, The record definition is
often associated with a type identifier in a type declaration to avoid the possibility of erroneously repeating
the deﬁnitiun and to save space within c,umpikr tahlm= The qyntax chart is shown in the appendix, but an

'?E

19

.
-
]

.

,!\ .
Exarnple
PACKED EEEDRD < e e
BEGIN - g N\
02999999999 ssan} (' o)
019993 squadron_numbe.*s studeaf dormn, student_room;
LAByA1C4A2Cy SSGTyTSGT,MSGT1 student, ranh,
15365 student_ —agey
(MALE,FEMALE] student_sex;
.+ " 'CASE LOGICAL transient
. BEGIN -
' TRUE1T 03999 next_basei DATE_TYPE out_process_dare”
FALSEY" STEING[SGJ ﬂermgnenf crganlzaflan" 3
: END3 . . o
—_ END STUDENT EECORD N S ® .

£

A,

Arra_}! Grouping

CAMIL also allows hgmgggneaus types of ddta to be grouped into an indexable array structure. The
. array-mav also be compressed for riinimum storage utilization by including the.word PACKED'in the array
' ~ definition. An array definition must include the range of indéxes allowed for each dimension of the array
’ and must also designate the type of elements which are being g:ré'upsd together. The range is denoted by -«
mcludmg a subrange of the indexing type in the deﬁmtmn or by denatmg the largest index and allowing the
compiler to generate a default minimum index: of “1”. Syntax for the definition is included in the
- “ appendix, and several examples are inciuded relaw:
Examples: y vl
ARRAYL101 OF INTEGERSY
PACKED ARRAY[10t20) OF NUMBER}
PACKED ARRAY(1210, 1215, 1:20) OF LOGIJALS
PACKED ARFRAYIL1510F o
PACKED ARRAY[4) OF , :
PACKEL RECORL "INTEGER Lyj k3 UM MBER n™i

File.Grouping c
A ﬁlél may be declared in a CAMIL program in order to gain access to data in the CAMIL data base.
The purpose of the file definition is to associate some specific data file by name with a variable in the
program which is.capable of holding an element of the file. The file identifier thus defined is regarded by
CAMIL as both the name of the \'.,ariable and the name used to refer to the data base file during some file
- operation. The file declaration must nameythe data base file, the type of item which the program considers
to be in the file, and the program name of the variable which contains a record from the file. References to
the data contained within the file variable are obtained by simply mentioning the name of the file variable
as explained in the description of the file statement. The syntax for the file definition is included in the
appendix but an example is indicated below.
~ Example: X
FILE *studentdata" OF STUDENT_RECORD

Expressions I)
e ——— e Z B
The CAMIL expression mechanism provides for all of the normal types of expressions and operators
found in most high-level languages, such as PASCAL, but also provides many extended features which other
languages do not have. Somge of the extended features include special set operators, multj-element
gxpressions (composed expresamns) a type casting mechanism, and user defined operators.

The lowest level of precedence ufmmpassgs the relational operators M="7, #7275 e
azp ugl T-hg mfgamngs uf the first six DDEN(DI’S are similar to other progmmnnng lemguugcs. Th;

]

poters h;we the same n,,.ferent (1 e. the addreéibca denulcd by lhc, pmrlters are cqu 111 The. other use, while
similar in appearance, is to determme whether an L!p(anIl] record field or procedure parameter is present in
a record or procedure call. This is tested by comparing the name of the paraffieter to a NIL pointer. The
f'@rm of this test is “"parmname = NILarid it returns a true value when the pammetaf does not exist. The

“€” operator is the=“contained in™ operator used to test set munbershlp The test *5 e s would be trueif 5
. . isamember of the 8t s.

The ‘next highest precedence level contains the “+" and *-"* prefix operators and also the “+", ‘",
ST RET T, e e st b i fix operators. The “+2and 27 will not be discussed,

. sincg their meaning should be clear. The “v" operator is the logical “or” operator, This ()PEI’:](D[has two
“Togical operands and returns a logical result, which is the inclusive-or of the operands. The “u” operator is
the set union operator. This operator computes the unjon of two set operands. The exclusive-or operagor
" ig also a set operator ‘which computes the logical difference of two operands. The operators '+
oot ettt e gre used, to shift integer operands. The *«=" and, “~~"" operators are left and dght end
of f shifts, respectively, with zero pad(l{ng The 1" is a right circular shift,"and “t<" is a lef(circular
shift, The | ‘s the string concatenation operator, Thl\ npcmmr merges two string operands producing a
Slngjc strmg as a result. . - “;
*n’ /T operators are found, The *x™ and ©/7

1

At the next precedehee level, the “x”, /", ==,

- are the normal multiply and divide aperators, *+7 and **//” are integer divide and remainder operators. The

lﬂg:igal “and” operator is “A", and *n” is the set iitersection uperator. ‘

The next precedence level contains the 17 operator and user defined postfix and infix operators.
The **1"" operator is the power operator, which can have integer or number operands, To express 2 ta the
nth power 2 T n" would be used. The user defined postlix and infix operators which are referenced by an
identifier are also found at this precedence level. An example of this type of operator is the postfix “sec”
operator, which looks like **5 sec™ when used. -

" The highest precedence level includes the operators * 7" and N and. also parenthesized expressions,
cast ¢ xprey;mns user defined prefix operators, and composed expressions™ The “=" operator is the logical
“not’” operator, and “N" is the set complement operator. Parenthesized expressions have the standard

. meamng, that the expression inside the parenthesis is evaluated prior (o using the entire parenthesized
expression as a result. Cast U(P[L stons allow vne type of expression to be ‘considered (or cast) as another
type of expression by placing a “type id ;" in front of it, This is a very useful feature fo have in atyped,
language such as CAMIL because there age many times it is esirable to override the typing conventions af
the language (especially in system programs). A simiple example (assumie ¢ to be of type character)
“INTEGER : ¢" allows the internal valie of ¢ to be used as an integer. Records and arrays can also be type
cast, allowing multi-access niethods to the same storage area, User deéfined prefix operators which are
recognized by identifiers, such as “line" and “col”, are also at this precedence level,

(_:‘nmp@scd expressions are also at the highest precedence level. When & composed expression is
encountered, the composing routine is passed the type of the object 10 be composed so that each element
in the expression list can be added to the stack incthe proper location. The resulting multi-element item in
the stack can then be used as the object of a verb, the parameter of a procedure call, as a value to store into
some variable, or as some value which is part of another composed eXpression. Because the type of the
object being composed is known#ull syntactic and semantic error checking occurs as the expression is
scanned. The following is an example of a simple composed expression which assigns a value to the write
cursor AT, which is a record with two integer fields AT « (5 ,8).", Values can be repeated ina C-OI;HKISELI
expression by using the "*” repeat operator, This is especially useful when igitializing an array and many of
the clements are to have the same values. For example, ifa is a 10clement array of integers, the following
will initialize the first elemént to 1, the second element to 5, the last element to 84, and the rest of the
elements to 15" a + (1,5.7%15.84)" '

ERIC | o

Aruitoxt provided by Eic:

O

ERIC -

Aruitoxt provided by Eic:

A : A . - R . ‘ R C o b, . .
The extensible features of the CAMIL language allow a useg to declare prefix; infix, and postfix
operators. There are two methods.available to the user for declaring operators. Onemethod is to declare an

- operator which is to be identified in the program by an identifier (the “lin¢”", “col”, and “sec” operators
_are defined in this way). When an operator is declared in this manner, the operator takes on a precedence

depending on whether it is a prefix, postfix, or infix operator. The prefix operators “line™ and “col”™ are in
the highest precedence level while “gee”, a postfix operator, is at the neﬁ&ﬁécedenc& level. The other type
of operator declaration is one in which an existing operatoris extended to new operand types. The user
extended operator acquires the precedence of the'operator symbol it is extending. A familiar example is the
extension of the common arithmetic operators to include complex operand types. The “+”" operator will be
extended’in the following example. The definition of the type COMPLEX is:

R

o n
= s
= i 0
wZo

=

JMBER real,imaglinary
ZNU :
\ COMPLEXS

The 't’nllmi;ing is a procedure heading which defines addition {using t,ht::f* symbol) of two complex numbers:
‘CéLQL;K + (COMPL:X a) +_ (COMPLEX D}Y¥ '

Al
Assuming the name of the module is plus, the procedure body for the above procedure heading is:

I + bp,reals
a.imaglnary + b.,imaglnary;

‘Whenever two complex numbers are to be added’in the program, the + operator will invoke the
-omplex numbers, then the statement “c < a+ (b+

defining operator procedure. 16 abc are all declared as
¢) + b7 would be possible. An entire set of such operators can be defined over complex numbers and stored
in a library, which a uscr could reference whenever he wished to perform computations usiég complex
numbers. A new number system could also casily be implemented by extending existing operators to
operands in the new system. The extensibility which CAMIL offers is quite adequate for many different
and interesting applications. . \

Constant “expressions, including packed composed expressions, are evaluated at compile time and the
resulting values are sbred in the program. The use of constant expressions reduges the program object size
because the expression is not computed at run time, This feature also allows the prografimer to change
stopape allocations throughout a program by changing a few simple constants used i other constant
expressions. This enhances the maintainability of programs by allowing objects, such as tgbles, arrays, and

¥

lists to be rapidly and uniformly modified throughout 4 program. ;

Executable Statements

CAMIL provides a large group of permanently defined statement types for the construction of
algorithms. Most of these statements are defined with reserved words as delimiters and several include one

or more other imbedded stateients, Magy dlso represent verbatim equivalents of standard statements from

ALGOL nt generality extensions of existing

and PASCAL, as would he cxp;utml, Several others rep
types of s

atements, and several are somewhat new as far as we know,

Old Favorites
Compournd Statement
- CAMIL provides for the grouping of several statements to produce one single apparent statement

through the familiar BEGINEND paic of delimiters. It also provides single character equivalents of these

*

I8 ga;

O

ERIC

Aruitoxt provided by Eic:

&
i

_through two characters *'" and **=". These often reduce programt text size making it possible to place

mor¢ program on a display screen by allowing several statements to be placed on a single line, CAMIL also
frequently uses BEGIN END pairs as grouping elements in data declarations and in CASE and JUDGE
statements. All BEGIN END pairs are fully matched, unlike in PASCAL where END sometimes appears
without a corresponding BEGIN.

Labeled Statement

CAMIL allows identifier labels to precede statements for purposes of branching to the statement with
a GOTO statement. Labels need not be declared and may be tforward referenced within a module, The
scope of definition of a label is the module in which it appears. The name of any segment tvpe module is

also considered to be a labtl to which control may be transferred by a GOTO statement.

RETURN Statement ‘ ‘

A RETURN statement, meaningful only in a procedire type mmlulu is provided and is equivatent to
A GOTO tua l.lbLl tollowing the last executable statement in the module.

[F-THEN-ELSE Statement .

A traditional branching statement is provided with the usual meaning of exccuting the statement
following THEN, if the expression following [F is evaluated true, and executing the statement following

ELSE (if present) if the expression following 11 s false.

aGO70 Staterngnt

The familiar but wisely avoided GOTO staterent is also provided lor use in escaping to seginent type
modules or for transterring to local labels within o module. Transfer is allowed o .m\f point within 2
module which can hﬁﬂulul so the GOTO may be fully exploited and abused.

WITH Statemenr

The PASCAL WITH statenient has also been implemented to allow local dereferencing of recard

cnaines. The effect iy 1o make any ficld of the dereferenced record usanle as a simple 1dentifier within the

statement to which the WITH prefix is attached, just as i, PASCAL. A variation which allows a file record
to be read up, dereferenced, updated, and replaced is also timplemented and explained in o Later seetion.
The other statements in CAMIL have either been developed or originated, unl they \\111 he explained

miore fully in the following seetions, A

Modified or Improved Statement Forims

Assignmment Sratement

The assignment statement is present in its familiae form for left asignment. Compared to PASCATL,
this statement has been exterrded by extending the types ¥y CK\HL‘SSHHIS which are allowed in the Tangnage.
Since CAMIL allows the user to structure multi-clement data types throupgh ARRAY and RFECORD
declarations, it also allows the user to compose expressions tor this tyvpe ol operand. The resulting

“composed expression” cian be assipned as avalue to o vanable of the record oty type, Examples would

be:
PACKED ARRAY({ 3t1010F INTEGER I3
Le=C34 18, 54 27, J¢6, 9, 103}, 3%22)3- A .
RECORD)
3E G IN) .
INTEGER k3 ‘
NUMBEE myn, 0;
END rec)

recv(29, 30.5y 40.8y 27 + 4=10t27, “w");

CAMIL also provedes g form of assipninient \th allows NAME vanables (penters) to be assigned the o
value of othet pointers. The normal meanig ol lett assignment i C '\‘\Hl 15 Ueopy the storage associatedd
with the right upcruul it the Storape assocn: ated with the Telt operand ™. Normul vartables will have ther
address assigned at comptle une and the comptler will venerate code to vopy the tequired ahount of
storage using these hiown addresses. 1 cither or both of the vartables ife NAME tvpe vanables, thie addiess
of the storage 1o be copicd will be taken trom the pointer whose adiress s Waown ateomple time, Thus
normal left assienment always mvolves the REFERENT of the indpcated wentitier or expression. The
address hield hy i pointer iy 1;. be copicd into o compatible pointer bylusing aright artow “\'»—t-'\ " upcuzw

W

with the gssocinted sneaning “make x point to the same address in stoerape that v s poinfmg to’. Since
attribute of being a NAME beloags toan nl;nhhcr rather Than to a type as o PASCAL | pointers alw, avs'
dereference to things mther than to otlier pointe 1\ Cthis the up anow sed in PASCAT to Jenote whether

pointer is being deteferenced 18 nut needed. The micest part of this definton s that rtpakes the meaning,
of the left assignnyent unifomy aeross constants, vartables and names while still allosing |hvn|hi" to be used

i the more uipifsuil cases i which they must be dealt with s addresses to be copred. We teel that the

resulting syntax s nvore congise than e ssntay i PASCAT s ssshown i the tolowing e xample '
- ! PASCAL 3 ! o -
value copys Xt 1= ve
Polntar copvt x = ¥ .
, cAMILY
\ Value capyé X vy —
Polnter cobPyt xX * ¥ : . =
The wzn;uri.‘-“nvflt‘t'nim:\ Mmore sipntficant e the eypresion hecomes more compeheate !t s n the o Y
Falfowing fourst p pomtes deterenees where the peters e fickds witdun fecords /
PASCALL lspteldryDetefuttliolde.ldtynereslza,wds $z2 wds?
bltsy

Iiﬁ?;LdfyDéf;f%fflgldt;ldt?ﬂe?.%ize-PlT§ 1=

CAMIL?® |so,idtype fsttield ldfyoe,.5l2e « (rds yblt=)

Flie PASC AL stareintents tn the abose examples aecom plish the same resultos the AL stements
. hepeath thept bt aie piore prone toerons sice some teldsequre Jeieldpence witle anow s and sontre do
not. Fhe composes expresaon used o the CAMIL geapnment turther pomts out the desirabality ol

asstrng vilues to st eelement dactems The exaniple s Cahen Froms the CAMIT compaler.
Arnetioon boey Staferien (DO Starenent v . E\',;
e CAMEL Laggaage provides tor the support ot et of kevs aind copditions which nigy ocew N

asynichrggously Juraye the execanoit of CAMIL propram The aithon ot CAMI praeiam trequenth

wishes to provide Ter the Wlignis of the person executing the progaam g case he wants to change [RESTIITING

to ek ot ol o sitigton he s entered nte madveahly o poseck at vagely predie tabsle tintey ih help ,

ol the propram aathor, o etfect he Aesals To provide shindisg olers to provess stch tegpests ad (o hink

ther to Dangrrhle ivaps which the et cancdo toresginest the ac hons, Somle gystems prn\ulc tor the wieth o

cormmand mede or contiel key eseape CAMIE provides this throueh support of wset of o fnnetign kess

on the wser hex boand amd several prendo Thevs which cans be Upidssed™ by the systemy when sonie

sthiiation The i hor unyy wish ln priocess b l\!ltg\lll(\l

Fhe author detiotes ot ol conditons, \\Imh B 1 silhiny Lo process, ata plice i the proprum where

e wishies to p!nl‘f"j\ thie vondtions. Hoone of the achvated condiions s civounteted, cogtral will be
franaferied fo the sttentent™ Tooswluch the aeiivated set of corndifpones rattachesd and continue theteatis

< o the followmy stafeprents appeam atter the 1 DO S faenient. Hhe authorona wdetrne the plice amd

the conditions by wisertim’ o new 11-DO statenent o the prosen i the execition pathe Phe tormat ol the

i = ,
atatement s s = ' . N

FRIC | |

Aruitoxt provided by Eic:

=
If setofcondltlons 00 statament '
The set of conditions is an expression and s caleulated and astvatest when the TE-DO statement s
encountered in normal program exeCution sequesce At the time of nommal encounter, the Pstatement™
) L . . . £y
tollowing DO is not executed, Al only Be exeatedt vne of the conditions i the L'\“H{l“l‘Ll ML OCCUTS,
The staterment tollowing DO s aften o CASE statenent wath tigs tor cach of the activated \mh{,Lhm\ The
. following example shows how the DO stntement s used to providy, \1?1 to the Hser, a way ot 1o the
pxtvmusnmduk gind the tne ledt fo ansagr the s Tion
l' 1
s ‘ o : { ;
b sample;

IF (HZILP, aAuK-Fl-GQIHbQDth go

CASE SY"“F'{E‘.Y’ (A system variable tells wnicn key oresseq

‘ ~ .BEGIN ; _ _ :

HELP! write At this polrs you may ohly answer the
auesflon as asked, press BACK to return
ta the Qreylauﬁ axampley, O6r press fthe
F1 Rey to see how much time you have

left to answer the questlon™ for 5 sec =~
B on tilne 274 col 53
BASK! GOTO module27;

GCOINGDOWN! GOTO system_crashg

Lo rTl@elaffk;&5*5YS.TIH£R*§TQKTTIHE§
EN v wrlite timeleft on line 30% GITO redo_question™?

ND 3 -

carasel STARTTIME«SYS, TIMERS tlmeloafteys:
an tlne 10y col &5 wr]te

"What 1s the moment ot the force you have speclfled
when [t is applled on a 20 Tt mnmant armtty
redo_questlion? :'7

accept with [digltss tar tim-t~*¢t e

atc,

L the above example the GOINGDOWN condition I e wlhinchris aeeited after the operaton teguests
CAMID o temmmmnate its opetatrons 10 seconds prionte s actualle stopping all CAMIL program ATV LY.
Ihis auther has, decided 1o use the condition to transter contiol 1o niodule \ulmh iight store the
students current statds on disk o that he cam be restanted atter the systen resuines nlul ition, Since the
conditton nught occur at any tine, even swhele the proveain owating on the uses tooanswer the question,

thie propreon st e asynchiononsds promed to deal with thes cventiality

IE DO-condition sets are “stacked™ o iested manner when [\i(n'l,"\ll;u‘,\ are called and conditions”
apply at the most recent Iavel at wloch they e active Thus o HEE P Rey unght be active masepment and
i a proveduie cunentdy beiny called by the sepments Hothe HEEE ey s pressed i this \‘Hllglliﬂ‘ﬂ. the HEL P
contdition m the procedure woubd be proc essed tather thao the one i the sépent. Bothe BACK hey win
defined i the sepment but pot e nllnl i the procedine ad was pressed while the poocedae was active,
cortrol seonhd be pamstenred back to the sepnent 1o the sttement tollowing the DO of the TEDO
.lg‘!lv.ll{xig,:ﬂ.’ilcj BACK ke The popian stick woudd of coniee be adjusted so that st conespomled (o the

stafe i swheeh the sevment sascactne bt the procedine ool poot been calted.

File Operations
File aperations lave been mteenated o CAMIL syt (o '\n\\uh fesy Dile aedqugsts to manipilate

data onn the tite amd tooalso wser the file nane s the wnoe of g batter contaming one clement of the file. All

% R %
Voo ' -

) . :
v Ay)

ERIC

Aruitoxt provided by Eic:

E.

N files dre declared i the program as a file oty certiin type of element. The'file identifier is then ?. variable of
. the -ty pe.uf the clement. The CAMIL file manager allows three basic kinds of files: indexing,. direct, and
variable, The gneaning of these terms will now be defined as they pertain to CAMIL files.)

Indexing files are files accessed by a file Key. 1e, a piece of data which is used to discriminate
between different records. in the design of the CAMIL system, it is intended that indexing files will be used
as control and directory f:lllig'li‘\[‘lﬁ and ot used to store Tarpe records of data. In the implementation of the
file manaser . indexing tiles are locked into the executive control system (FCS) of the CYBER but protected
on disk whenever they are written. The result of this approach is that READ access to indexing files may
alwiys be accomplished without physical 1/O delay or time slicing of the program. The cost is that records

cannot be very farge without wasting a large quantity of ECS. ‘

Direet fevess files are files ol fixed record size aceessed by u specific record address. Records may be

’ . hutfered (more than one togical record within a physical record), and new records may be written into
fmpty ecord§atomatically allocated by the file manager. This access method is implemented so that the

dish address of each record may he compnted from the fecord address, so that only one physical file

dperation is required to obtain the desired record. Direct access addresses range from 1 to the number of

records which My oceur in the file.

Varghle size files are implemented so it there is no limit on the size of records other than the limit

gurted i the file definition. Also. with variable size files, only asingle physical access is required to obtain

. _the Jegired record. ?‘(}mw is allocated for these sectrds so that the minimum number of disk sectors needed
- "“\“ﬁf\\i}%mill the Size OF record written are aljocated. Actual record size is maintained by the file manager and
Ty Srecord update which chapges the size of ghe record written results in automatic reallocation of disk

Lagace 10 accommodate the additional size. All dJisk space is automatically recovered when records are
and “ehieckerboarding™ ot available sectors s prevented by consolidationsof adjacent sectors.

! foflowing variations ol four basic conumnands hairdle all file operations permitted on CAMIL files
x yu.-l’g;'-mmnﬂ ot 3 CAMIT o bateh program attached to the CAMIL data base.

Pxamples

ke AD filef]d (Reset to first record}
READ tile (Sequentlal read} *
READ fllellndex) (Read particular record}
i READ tTllellndexltslize (Read varlabte slze record}

i HRITE tlte (Sequential writel}
HRITE fifellndex]) {Arite newn{lndex=0)or old rec}
WRITE tlltelindax])isiza "Write varlable slze record}
QELETZ tile : (Seauentlal deletel
pepreT: fitetlndex]): (Delete partlicular recordl
CELET: flieCALL) (Purge contents of tlle} ¢

HITH “ILE tllellindex] OU (Reserve and read denoted ftlle}
Crecord, dereference flelds 1f}
{RECOROD typey, replace undated)
(record, release reservation}

A tile mdex i optional with the meamng of sequential access Lo the nexeecond e file 1101 1a
ortted. The tecord size wdentiticn s only tsed tor varable sized records and is automatically set to record
size w len peading and controls the size ol (Ire record being written, The ELSE statement is optiona) and is
only executed shen the file operation ot be Tully completed. A built-in system variable contains the
aetual file erpor whicls has ocenpred and mav be interropgated for use in deciding.how to process the error,

s Any Lile stagement which does not retorn fully suceesstul caused NO alteration to the file on disk, A file
may be teset 10 the st redond tor sequential processing by reading withan empty intlex,

O

RIC ‘ | o

Aruitoxt provided by Eic:

L]

The name of a file (ype variable has a dual role in CAMIL. When the file name is preceded hy a file

“operator, such ay “READ", an operation upon the disk file asociated with the fle natue In the file

declaration is performed, Within any other usage context, the file name is a varable of the type of data
indicated In the file deelaration. ¥ the file is a NAME (ype variable, o pointer s associated with the file
name. Like any other pointer, ‘this pointer is the address of storage allocated (o contain an nhchl of the
type ‘of the file. In this manner, a single disk flle name can be used to read into several buffers, some of

agthich may be dynamicully created and only.used locally ina procedure forexumple. v

Q

ERIC

Aruitoxt provided by Eic:

The upcmtmm supported by the fite manager include specific functions for each type of file request, '
which is in tum ‘dependent upon what fields are included or omitted i the file statement-and the type of
file the action*is performed upon. The user sees; l""lll‘ sirnpler interface, since he is only presented the
operalors - READ, WRITE, DELETE, and PURGE and a record updating construct based on the WITH
statement. The READ function only reads records into the file buffer. The DELETE lununm deletes the
designated record from the file, The PURGE function deletes every record fram the file. The WRITE
functlon replaces the' designated recond on the file if it is found or adds it,to the file if it is not present. A
constrtact Is provided with1he syiitax: C

W . ["‘-J}' -

WITH FiLE myfilelindex) UD <statement> ELSE <statemant>

¥

When the ahove construct 15 executed, the desipnated record s chiecked to insure that it s not
reserved by some other program, The recofd issthen reserved for this propram, read into thefile buffer, the
statement following the DO is exeented, the record is rewritten onto disk, and the reservation isremoved,
The reservation step assures that two programs do nat re: ad thesanic recorid, update i ts contents, simd then
rewrite it oblivious to the fact that cach s updated the save record, The ELSE clause is executed only if
the recorc cannot be reserved and/or read. Several attemipts to reserve the record zire automatically initiated

- by the file manager to clirninate the need for the progrmmer to handle ther: ﬁ(’;& 1se when another program

might hit the same record. The WITHFFHLE form also acconpl ishes the same Function as the norm al WETTI

"statement as il (lcrclcrcnus the desipnated record in the same manmer described above fyr - Ahe WITH

statement. i

fllE security is performed by the file nmn.n er. When g file s defined in the CAMIL. data base, 1t s
potentially available to every CAMIL program, Access is controlied in the defin tion process (an inter-
actively run CAMIL. program) by allowing the file definer toequ ible specific file manager functions for any
CAMIL program by name. Since these nunes are unwgue, the file manager can_thus authorize specific
programs to puh.lp's read o file, but not add to it oralte rany records in the file. Provisions arc also made 10
dontrol baich job file secruity by associating permitted file operations with the CAMIL program from
which they are submitted. By contiguring the system so that requests can only cone through the CAMIL
system and its associated perpheral processor routine, the CAMIL data base is fully proteeted from direct
invasion, and access must come thrangh the file security process ot the file manager. The file editor can also
define default security cntries to allow files to beaceessed by programs without specific security ageess ifit

50 desires. .

Iterative Statement -
The: CAMIL iterafive statement combines in a single-statement all of the functions of all three
PASCA L/ ALGOL iterative statements. The statement is based on the fellowing reserved words, all of which

are o ptional: .
FOR Followed by a variable which is initialized when theloopisstarted and increnented by the value
~ of the BY expression as the loop repeats

FROM. If present. denotes the starting vakuo of the FOR variable; defaults to 1

TO If present, denotes the stopping value beyond which the FOR variable will not contimie; defaults
-to the largest integer -

BY If present. denotes the increment to be added to *I|L FOR vartable L«th hnu tlrroughi the foop:
defaults to | 4

[
[

2y - :

UNTIL K picsent, Iy followed hy i Iup;uwlcxr;reﬂiun which ‘hc mﬂuqled at the end of each loop and
“which will terminate the luopif the vaue is TRUE; dgiilis (o FFALSE

WHILE §f present, Is followed by a logical expression which \mll he evaluated at ‘the beginning of each
loop and which will terminate the loop it thc value is FALSE; defaults 1o TRUL

If wone of the optional words jre present, the loop wifl be terinated only hylntent;nml cxlt or by
reaching the Implementation dependent default value of the 'REPEAT phrise. All repeat computations
-~ invulv’ing\lhc phrases FOR, FROM, TO, BY, and REPEAT are resolved by the compiler or generated code
“pror to Joop Inltiation and result In 2 maximum iteration limit. This com puted value controls iteration
along withe the UNTLL and WHILE expressions. For this reason ,assigniments to the FOR variable wilhl(l the
loop will affect the values it assumes, but will not atfect the nmnhcr ofiterationsin the loop.

The following siniple rxmnplc shows the advantage of combining nop functions into a single

'immm‘nt
CAHIL: ’
FOR L FROM 10 T0 1 BY =¢ UNTIL FH.,ERR=EOF 03
"READ myfile; arralllemytila’)
PA“EAEA\EI
it=10; ' . .
FOR 121 TO 5 JO ;
B OIN , _
KcAD mytlite; _ ‘ ~N
IF LOF{myflla) THEN GATO 15
EL3E ¥
B5GIN arrav[il*mvtAOET, Lt1=1=-2 ENDS
ENOT '
151
: ~ R

: i =
The CAMIL fornis not only an iwprovement in flexibility tor the programmer, but the routine used
- to corpile it is smaller than the three toutines used to compile the three PASCAL ilentive statements.

&

Cuse Statemenr drud (5070 Case Statemaens

The CAMIL case statement s siple extension of the /\TIE(S()[/FAS('AL case siatement, The
extension adds sin FISE cliase Tor bameal completion of the set of possibilities. In theevent that one of the
dosignated tags is oot tound tomateh the CASE selector expression, the ELSE cliuse will be exeented if
present, This abili ty climinates the freqaent need in PASCAL to inbed the CASE staterent in an IF.
THEN-ELSE statement which can be particulaly awkwand it the chusen taps cannot be expressed as a set,
It also resalts iy 0 more Huun(unplunun.n ion of this rather frequent concept while clarifying the intent

oo such a combination,
Y

A new form of CASE, g;lllml the GOTO CASE, is added, 1o this Formn, whicliappears identical to the
normal case statement, the compiler avaicls geaeration of the branch inst mctions which nonnally follow the -
code for cach tagred statement. The result is that if control is transterred to one of the tagged statements

rathier thge tothe ELSE stutement. it siad all of the following ;\ygul'@:t;nunonlg will be executed in tumn.
The 118K statewment will, however. be avinded. This torm o the case provides a direct cquivilent for the
FORTRAN conputed GOTO while gvinp it the structured appearance ot the case sta terment and avoiding
the manufacture of nurmerous labels to capture this type of logic. While we do not expect to see this form
Frequently used. it does provide a trnskational equivalent for the FORTRAN/ALGOL forn of computed
GOTO andd the implementation cost is very smvall, This statement is represented: by preceding a noronal

CASE statement with the reserved word*=GOTO™.)

Mo 2
ERIC o - o .

Aruitoxt provided by Eic:

Cr

Q

ERIC

Aruitoxt provided by Eic:

Judge Statement ' . . N

Since the primary implementation context of CAMIL Ind udes the operation of interactive terminals,
we felt a strong necd to include a specific statement forAhe acceptance and evaluation of resporses, After
observing the implementations of many systems, it was determined that one of the most powerful resportie
accoptance mechanisms was implemented in the” TUTOR language (Reference 3). The -essence of this
mechanisiy in CAMIL Is a combination of an accepting, processing. evaluating, and looping function
combined into a single statement. The statement Is called the JUDGL staterient and isso narmed after the
JUDGE contingency structure implemented in TUTOR, In CAMIL, the JUDGE statement has the following
syntactlc form: '

JuD 6e
<response acceoting sentencer
BEG IN o
_cexorasslion list> | <action stape
<exoresslon list> | <action stafement2;
l:ii ,. . ™
caxpression fist>» | <action staftement>;
END | b C
ELSE €no match statement> | ' ; x .

N i

The response accepting statement s usually an aceept séntence acquiring input from the keyboard
Into a bullt4n variable called the judge buffer. It can of course be a compound stateruent which *“massages”

the content of the judge buffer after accepting the input from the student. Since the normal accept -

sentence allows many options restricting the input, thiss tatement is not normally needed but itisavailable.
€ ;

commas. In this way. more than onc answer can be associated with each action, Ranges of numbers,
integers, sels, strings, characters, and expressions are allowed as tags. The compiler generates logic to

. 'The expression tag lists are nounally anticipated responses or ranges of responses separated by

convert the contents of the judge buffer to all of the types of things on the included tags, and tries. lo

match cach of the tag expressions to the converted content of the judge buffer. If a m atch is found, the
corresponding action statement is cxecuted, and ‘further matching is terminated. If no match is found, the
ELSE statement is executed if present. ‘ ,

After the above has occured, a sermantic flag is next tested. This flag will have been set true if any
match were found and false if-no match occurred. Ifthe flagis true when tested, the JUDGE statément will
terminate and the following statement will be exccuted . If the flagis false, control will be transferred back

" 1o the accepting statemént if a maximum count has not been exceeded. Since some tags might corespond

to anticipated “‘wrong”™ answers which would require further input, the sermantic flag cin be reset in the
action statement to cause further looping. Int the sarne sense, the flag can beset in the ELSE statement if no
further processing is desired. the loop count is also a built-n variable and defaults to no limit if not set by
the author. The actual number of times that the JUDGE loops is stored in another built-in loop counter and

. is available to the author for his use if he needs it. An example follows:

arases)

on lime 5, col 5 write :

“press the Indlcated keys to choose a qame program,
Some of the games may not be working. vyet. You nay
type In *quit® 1f you want to leave now

.a. The Hangman Game
b The Spelling Game
c The Race Game

~7

. The Startrek Game - ' ' , ; v :
The Spirogram Machine , " ’ , ‘
"The Empire Game”; -

-

JuUbGe
’ accebt on Flﬁa'ﬁi col fB wWlth [na:aps.erase ezho]
..+ "BEGIN t L
h “vYaty ‘ GQTD”HANGHAHS: ‘
- *b°1. 7 GOTO SPELLGAMES X , o
"c?t1'1"|. "tor-5'set wrlte flashing *not workling yet™;

. : JFLAGeFALSE™} ,

qult! KILLPEH' - ‘ ‘ ‘ e
END ' , . .
tL3E : ' - . :

for 3 sec On llna 30y :col ¥ wrlte < .

‘"No, enter ong of the letfters In the menu or type "quit®
to leave this orogram™;
- v :

Sentence Librr

» ~ Several standard sentences are available in the CAMIL language. These sentences allow the user to
" perform several needed functions, and some elaborate speclal purpose functions. Most of the standard
. sentences are implemented in CAMIL, but a few are implemented in PASCAL to avoid the swapping
overhtad of frequently used sentences, Before describing the sentences, we shall explore some of the
standard prepositions which can be used with the sentences. Prepositions can fall anywhere within the

- sentence and in any order, as long-as they do not interfere with the Vérbﬂbjeﬂ phrase of the sentence.

. The until preposition has a function key set as its argument and can be used with several verbs. {

. fuﬂctian is to provide a set of function keys which act as an until condition of the sentence. When the until
condition is reached, the sentence completes execution and program control continues, All of the function
ke ys in the until set are considered as next conditions, and will not be considered as asynchronous function
kcypr\:sses if presscd whgn the sentence is in execution, Some examplcs of the until pre pc)sitmn follow,

acgepted when either a NEXT BLU NE){T or a HELP l-;;ey is prcssed When one thhe untll Ccmihtmﬁ
keys is pressed, whatever input the user has Entcred will be accepted and the program wﬂ] continue

execution after the accept sentence. - , : .

acceaf.unfil'[NEKT;BLUEENEXTcHEgpjﬁ
.) ’)) 7
The sccond example is one in which the until preposition is used with the write sentence. In thiscase
the write sentence will output the information to the terminal and then pause until the -until condition is
met (the NEXT or BLUE_NEXT key pressed). When the until condftion is met, the write sentence will
then erase the displayed information and the program will resume control. following the write sentence

unt Il (NEXTyBLUE_NEXT]
mrite "NEXT .to continue
o o - BLUE_ NEXT tor more Information®
Once control returns from the sentem:e using an until prepasxtmn the programmér can find whlch of
the until keys was pressed; in the sare manner he can query which function key is pressed in an IF DO
statern:nt In the above example one might want to branch, depending on which key the user pressed
(NEXT or BLUE_NEXT). The SYS. FKEY variable contains the desired information so that the program
., can perform the deslred fun;tlcm dspsndmg on the. kéy pressed. , -
S ; o | o o _,qb
16 o, . . :

" the untll set, replaﬁng their meaning with that of an end-of-input terminator. This allows the program to
accept inputs and perform different functions on the input, depending ori which key was used to terminate*’

~ Inall of the s‘entenf;gs.in which the until: preposition’is defined, thereisalsoa time limit which may
be imposed using the for preposition. When a time limit is imposed, the sentence will pause for the desired
amount of time, and if another action has not restarted the sentence when the time limit is reached, the

* sentence will continue, If both the until and for prepositions are used in the san eisentence, the sentence
continues execution when either one of the until keys is pressed or the time limit is reached. To indicate ’
~ units of time in'seconds, the postfix operator “sec” is available to make readable time caluses. _

A few examples of the for preposition follow. They are similar to the examples for the until
preposition except that exegution of the program is nbw resurncd after the desired time limit is reached.
accept for 5 sec)
wrlte “hello” for 3 seci

There are two prepositions: which can be used to indicate screen ,positions: at and on. The at

prepasition has two integer parameters whcih indicate actual xand 'y dot co-ordinates on the screen. The on

prepasition .alfo indicates a screen location, but on-a character level using the line and column operators.
Several simple uses of the at and on prepasitions follow: -

accept at 5,103 o
“accept on tine 25, col 23
wrlte "“Next to contlnue™ at 26415) ,
write “Next to continue* on | lne 28, col 155
‘ T ’ . . S
~ Other special purpose prepositions are available and -will be discussed with their associated verb
phrases. ' - - -

The ‘standard sentence to request input from the user is the accept sentence.” There are many
vatiations upon thé basic facility for response input. The basic accept sentence. automatically places the
pmmp?ing arrow at the accept cursor, awaits -a user response, and erases the prompting arrow when the
accepting state is completed. An elaborate sentence example could be one which sets the .accept cursor,
displays the prompting arrow, limits the input length to three characters, only accepts octal digits, converts
the ‘input and stores it into an integer variable i, and places a S-second time limit on the user’s response
time. The following example would perform the functions described: o

‘) . o -
. accept it3 OCT for 5 sec on {ine 24, cot 45%

To describe the functions of the accept sentence the possible prEp@siti_nnsjand defaults will -be
described. The accept verb has four preposition types; an until set (the until preposition), a time type (fon),
a'screen position (at or on), and a with set (with). T i

The until preposition temporarily removes the asynchronous nature of the function keys contained in

the input stream: If ho until clause jis present in the accept sentence, the NEXT key along with any keys i

 the system defined variable SYS.UNTIL sct are assumed to be the end-of-input keys. : :

An accept statement may also be terminated by a time limit which is specified in the “for” clause. If
a for clause is present, the accept period will be terminated at the end of the specified time limit, assuming

the user has not pressed one of the defined until keys."If no for clause is present, ‘the accept period will only
“terminate when one of the until keys o an active function key is pressed by the user. ’

The screen location clauses at an on are used to designate where on the scregn the accept prompting
arfow - is to.appear. If no screen location is given, the accept will occur just to the right of the last item
written onto the screen. : ,)

|)

~J
Qo
frey

: o 5 »
The with clause contains a set which allows several special functions to be performed during the
accept at.atg The functions whmh ¢an be prﬁent in the with set are: : J

naarraﬁ- accept ﬂifhouf dlsglarinq thy prom

"noecho ia nor gcho user Lnaufi
nook do not dlsr}lﬁav fﬁe ékf’na- in ‘a muge St-atements -

l -
undgrilne drau a under t{ne dispiavlﬁg the %tng*h of fhe
accept llmlt- .

erase_echo erasgffhe previous lnﬂuf In a:]udglng,sfa;e-_

aflicaps ftrans!ate alnsalphabét121kev§ into capltallze
node., o ’ '

- nocaps “fransi ate. a!l alphabatic chaﬁa{fers Into-tower
o ‘ case: mode,

touch ?irlwafe the ruuzh aane! und accepi data fFon
- digjrs - only echo/accept digits 0~-9 and synbols

‘.‘i!‘ ‘*F' and l_!,!

. ¥

_Eefslﬂlglfs'aﬁ:v acho/acceot octal digi?s.ﬂi?.gﬁd‘5+‘

Ths accept verb also has an optional abjegt which may be the subject of the accept. If an object is

“present, the accept verb will convert the input to the type of tlie object and store the results into the accept
object. For example, if “s” is of type STRING, then “‘accept " will place the user input into the variable

N “S“. N N .

. When using an accept object; the accepting limit and accepting action limit can also be specified. The. .
accepting limit indicates the maximum number of characters which will' be echoed/accepted. Any

* characters which are pressed after the accept limit is reached (also available through 3, LIMIT) are ignored.
The accept action limit (JLACTION) .causes the NEXT key to be pressed when the indicated number of
‘characters have been input: Thus an accept with the accept limig set to 1 will immediately continue .
execution after one character is imput by the user. The method-8f indicating the acgepting limits is by
placing a " accept limit : action limit” after the ijEL't Thus agcept 1:5 placzs an accept limit of 5
characters on the ac.c;cpt and ﬂcgépw :5:5 plages a an accept and acn}m limit of 5 on the accept.

The accept sentence also performs the necessary conversions to the. type of the accept object. For
example, if accepting into a type Boolean, the accept sentence will converf the input string TRUE into the
internal representation for the Boolean value of TRUE. Asan added feature, when accepting into-an integer
or number, the accept sentence will automatically specify an all digits accept condition so that only digits
are echoed, It Is also possible to signify an octaldigits con dition by plamng : DC’T“ after the accept object,
or just OCT after an accept or action limit. :

The accept sentence also has two altemate forms: acc:ept more and accept rep. The accept more °
sentence is. used to continue accepting starting where the last accept took place. For instance, if the
. characters abc were accgptgd and an accept more was excecuted, the accept cursor would fall after the ¢ of

" abe, and the abc would bé part of the current accept. That means all of the editing keys and erase keys

:12 - .

28

.

L

could-be used on the abc just as if it had been typed during the current accept, The accept more sentence
does not have a clause for setting where the accept is to occur (obviously since the previous accgpt is being

" continued), and it does not have an objeg! for the accept either.

B The accept rep sentgnce is for aceepting and represgntatnvely echoing user responsas, When an accf:pt.
rep is executed, the ““J REPECHO” flag is set. This informs the driver to return control to the program after
one keypress has been received (so the program can provide a response) and also that the keypress should
“not be echoed, All of the prepositions avajlable with the accept verb are Gptloﬂal 1tems to the accept rep,

“but no object can be meaningfully accepted into. - , .
The pause sentence, : PR o C
. To temporxarily pause pmgram‘ execution,. the pause sentence can be used. The pause verb has two

: optiona] clauses and no object. Theré is an optional until c,:lau,se which sigruﬁes which keys can end the

- function key, is pressed. Some examples follow:

‘pause condition and an optional for clause which can place a time limit on the pausing. If no until clause is
present, the NEXT key and any keys defined in “SYS.UNTILSET” are used as the continuation keys. If no
time limit is placed on the pause, program execution will be suspended until a chtmuatinr\ key oran active -

pause} = CPause untit NEXT [s presses})
. pausea untl| [NI;.XT.EACI{] CPause untll NEXT or BACK nressad}
pAauge Car 5 se: fPause for 5 seconds or untli ‘NEXT}

.7’he mrife s&nteﬂce

- The standard sentence to chsplay textual mfnfmatmn on the screen is the write sentence, There are\
several forms of the write verb, but the discussion will’ start first with the simple form which displays text
on the screen. The object of the write verb can have any of the standard typés. (INTEGER, NUMBER,
CHAR, STRING, and LOGICAL) or any string containéd inside double’ quotes (**. .. .”). The write verb
‘will convert any of these types into the proper form to be displayed on the screen, Mnre than one object -
can be listed with each verb by simply llsting them after the verb,i.e.,

write "The ansner‘“ls Msanss"” and’- the averaas |s ", avg I
Formatting is accomphshed by fgllowmg the iterns to be displayed mth mteger ’, where the integer -

is the dgsired length of the item being displayed. This makes it easy to generate lines of data with column
_ alignment, even when numeric iterhs of different magnitudes are. mvnlvcd For INTEGER values, if the
length specified-is not long enough to display the entire value, the length is increased so' that the entire
value can be displayed. To display an integer or numeric value in octal, an OCT can follow the “: integer”

“or *; OCT” can be used and the value will be displayed in octal digits. When OCT is used, the displayed
number will be displayed with leading zeros as blanks. If, however, leading .zeros are preferred (as in

" memory dumps), they can be specified by using ZOCT instead of C)CT in the sentence.- The following

" example uses a length limit, DCT and ZQC‘T -
-u!ﬁ?—i-fe 193 26T, rm&norvtl 1810 20CT - on tine lycol 53

"' The precision of NUMBER values is :@n:rr;nlled by specifing the entire character length of the fiumber
to be displayed, and also the number of digits to display on the right-hand side of the decimal point. The
form i similar to PASCAL and looks like “: | : p’, where|is the total number of characters to dlsplay
(mcludmg the decimal point) and p is the number of digits to the right of the decimal pomt Af the **: p"" is
left out, the number will be displayed without any- fractmnal part. To display a number (f) with nine places
to the right of the decimal point and five places té the left “n : 9: 5" would be used. Numeric values are
* displayed in scientific notation (i.e. 5.6 x 1018) when: ,fherg isnot a precision specified.
‘ Several prepositions are optionally available to" augment the capabilities of the writé verb. The at and
on pre,pﬂsiﬁans are used o direct where the information is to be disnlayed on the screen. When using one

Y :
-

E_u 3

Q

ERIC

Aruitoxt provided by Eic:

 different, modes.

 An exarmple afé[-g the write verb follows:

draw sentences in the previous exampln?.s

R
1

A : L .

of these prepositions, the starting pcsntmn of thc message is SPEGlﬁEd and thc left write margin is set to the

~ specified « \:olumn pusitmn s0 that any line overflow is aligned below the first line.-

~ The “for” and *“until” prepositions are both-available with the write verb and since they perform
similar functions, they will be discussed together. The function of these preposntmns is to determine how
long a message remains on the screen, by waiting on a keypress or time limit. When one of the specified
conditions is reached, the mformatlon displayed by the write sentence will bg erased, and the program
execution will continue. : .

The write verb perfafms all of its textual chsplaymg, in the write mcde of the terminal. Tay rfm’r’n

wiiting in the erase and rewrite modes of the terminal, the unwrite and rewrite verbs are used, respectively.
These verbs are used just as the wﬁte verb, since the nrﬂy difference is that they, place the plasma panel into

When' the flashing adverb is usgd with the write verb, the message is flashed on the screen uitil a
NEXT key or one of the until or for conditions is met. The write flashing clause has the same parameters as

the write verh, and the only actual difference is that, the mgssagg wﬂl flash on- the screen unti‘l smme*

cnndltmn is met. A simple example follows ; .

~nr1fe,f|a§hlng "You have won' for 5 SE&c }

is . N

“

Other adverbs ‘which are used with the write vsrb are “large and “unlarge”. They perform the

write/unwrite functions except that the text is drawn with vectors instead of with' dot patterns, This.allows

the size' and rotation of the text to be. controlled by the program, providing a means to write out largeA

headings or to label graphs with vertical titles, etc.

“Two optional prepositions can be used with the lwrfva/unlarge adverbs rotated and sized. The rotated

preposition is used to control the angle at which the data is dlsplayed with a default in the normal

horizontal position. The sized preposition provides the means of stating the size of the data compared to -
- normal size. By mdlcatmg two sizes (i.e., “sized 5,4”"), the x and y sizes can be stated separately, allowing

either- tall and narrow or short and w1de gharacters If no size is stated, the c:harm:ters are normal size

characters

_HP;fg I'arge °DEMO PROGRAM® sSized & on ‘iﬁ%'si'ﬂé'“iﬁ{
Graphu: sentences,) e
There are several available sentences to pmduce graph,u: displays on the terminal. Lines, dots, and

‘circles can be drawn, using the “ﬂraw”, ‘““connect”, “dcts" :md “circle” sentences A brief description of

each verb follows:

The “draw” sentem:e can either dray a line or plot a dot. Two prepnsntmns can beused with the draw
verb: to and from. Both of the prepositions require two arguments which stand for x,¥ co-ordinates on the
screen. To draw a line, the from clause signifies the starting point, and the to clause signifies the ending
pmﬂt The sentence “draw from x.y to x+5,y+5” will draw a line from the point on thescreen representing

X,y to-the point x+5,y+5. If the starting point of the line to be drawn is the current write cursor, the from
preposition can be left out. The sentence “draw to x+3,y4" will draw aline from the current write cursor

location (x+5,y+5 if the previous sentence was just ‘executed) to the x+3,y4 screen location: ¥

To draw a sequence of connected lines; the connect verb can be used. The camect sentence draws a

sequencé of lines, ‘starting at the first pair of points and connecting all of the listed pairs of points

fgllm\rmg Thus the sentence “conneet Xy, x¥5,y+5, x+3,y-4" would pmducz tl"if: same results as the two

v

30 34

‘ Dut“s can be drawn using the draw verb by leaving out the to clause. The sgntgncc “draw from xy"
will turn on the dot at the X,y location of the screen. A dot can also be turned on by the entence ‘‘draw”
which will turn the dot on at the current write cursor. In a similar manner as for the connect verb; a group '
of dots could be plotted using the dots verb. The dots verb simply plots all of the points hsted in its-object

list. The sentence “dots x,y, x+6,y+4 x+1,Y-10" would plot the three points listed on the screen.

To draw circles on the screen, the “circle” verb is used. Several optional prepasitions are avaﬂable to

" modify the type of circle which- is drawn, but the only required object is the circle radius. A precision .

parameter is optional. If no precision‘is present, the circle routine will chame an adequate number of line
segments to use in drawing the circle tg produce a smooth circle.

Several optional prepositions are available with the.circle verb. to control the type and place the cu:cle

~ is drawn, The first optional preposition is one of type “screen location” used to denote the center of the,

circle. Either of the two screen location preposition(*‘at” or “on™) can be used to position the circle. If no
position is given, the circle will be centered at the current write cursor,
~ There are two possible ‘tlauses to control the period of time the circle remains on the screen by using
the “for” or “until” prepésitions These prepositions work in'a similar mﬁnn'cr as with the write verb.
Other prepasntmns include the ability to c:cmtrol “the: eccentricity of the circle by using the
*“eccentricity” preposition. This preposition allows. circles to be elongated along the ‘horizontal or vertical
axis, forming eliptical figures. Arcs Of circles can be' drawn using the *‘startangle” and “stopangle” pre-
positions. By specifying these angles, just pprtions, of a circle can be drawn. Zero and 360 degrees are the
default values for the start: -and stup angles, respectively. The last optional prEpasnmn pn‘mdes fcn‘ drawmg

' dashed circles,

An example of how to use the prepositions follows, The circle is to be of dla:neter 50 (in dots),

" precision Df 25 line segments, to be erased after 5’seconds or until a next key is pressed and w:th

2.5 (elongated vertically).
o

"5 sec intll (NEXTD clrcle 50,25 eccentricity 2.5-

A simpler gxample draws a dashed half circle of radlus 100, which will lﬂnk like the letter C only

* dashed, ~

"dashed circle £00 Efaﬁ%anglé Bu;smﬁangig ,2?11%

The unmrc]e verb is 1dent1ca] ‘to the circle verb excgpt that ‘the uncircle vérb erases when the mrg:le
verb draws, and it writes when the circle verb erases.’ : .

Other sentences,
Some other standard sentencgs follow:
The EL‘hO verb is used in representative echo modes, that is onc key is interpreted by thg program as a

- string and placed on the screen in the proper position using the echo verb. The echoer! output is also placed

in the “JBUFF” variable so that it can actually be erased or edlted using the erase and edit keys if an -
accept more is executed by the program.
+ The erase verb is used to erase individual lines or to erase the entire screen. It has only one optional
object, a line number which indigates that only one line is to be crased. The default if no line is specified is
to erase the entire screen. When only one line is to be erased, the current left and right margins are used in
the erase operation so that if the desired line to be erased contains a graph or figure it will not be erased.

To load special characters into the terminal’s random access memory (RAM), the LOADRAM

_procedure is used. LOADRAM has two parameters: () a description of the character to load as a Boolean

array ‘and (b) the character position at'which the character is desired to be loaded. When loading several

i

characters into the terminal’s RAM care should be taken not to db a full screen e'ra;se before all of the

- characters have be¢n lnaded since a-full screen erase ends all output going to the termlnal (sée the catchup

verb). . _ .
To operate the slide projector, the slide verb is. usc:d This verb only requires one parameter: the slide
position desired. A negative slide position turns the slide pmjector lamp off, and any pogitive integer wﬂl

position the slide projectorand turn the slide on.

The external verb is used to place data on the terminal’s extcmal output Jﬂck The verb’s x:!bjt:ct isan
intsger valué which is to be zxpﬁrted to the-terminal's jack: Up to 50 values can be placed with an gxtemal
: verb . — v

The catchup verb has no paramcters of any kind and is used to pause the ip;r'r:grarn unfil all output to

 the terminal has been.completed, This is a useful verb when sending data“g the terminal’s external jack or

when loading special characters into the. terminal’s RAM since a full screen erase would.end all output going
to the termmal (including th types mentioned), and the output lines to the termmal are relatively slow.
' IV, CAMIL CéMPlLER PROGRAM

lmplementation Factom

The implementation of CAMIL consists of a compiler 6 translate CAMIL programs into executable
code, a terminal driver to schedule and interface the system to actual computer terminals; an executer to
manage the program swapping and provide implicit language services, and a large group of capabilities

written in CAMIL and available as built-in language features or, as system level CAMIL programs, Each of .

these major areas will be described in a separate section of: this repnrt for ease af avoidance by the reader
‘who is not interested in all of these aspects. :

Narmative Desgﬁptiﬂn of the CAMIL Compiler
- The CAMIL compiler, is a top-down, recursive descent, single-pass, optimizing, machine-code

generating, partial-compiler. The major sections of the.compiler program are:
1. 'Interface Section ‘

Compilation Driver

Lexical Scanner

Declaration Section

Expression Section

Staternent Section

A

The interface section of the mmpﬂer mcludes the attachment to the CAMIL data base, the compiler
initialization logic, the request reception logic, reinitialization logic to complle more than one pmgram and i

logic to perfarm Lmtml processing of source modules.

The cnmpder driver includes logic to read up and process all of the necessary modules to determmf:
whether partial compilation is suitable and then to determine which of the source modules must be
recompﬂed It selectively directs compilation of affected modules and stores the resulting machine codé and

mltlallzatmn data as necdgd) : o ‘ AN P

Thf: 1exical “scanner consolidates c;haracter stﬂngs into 1dentlfiers numbers and stringk, and
%

-categorizes these elernents as to type, returning one clement each time it is called.

“The declaration section of the compiler scans data and procedure declarations within the source code

‘and builds internal symbol and structure tables for use by the expression and statement sections. It also .
stores the initialization values for constant and vaﬁabledata types pmducedéby the gxpressiun sectian

, Ageneratmn Df cude t'nr the mmputdtmn uf mmputable expressions, lt alsu cnmput&s the paramgter hsfs Fur
‘ ;pmc;dgrc calls and lists of expressions used as the objects in sentences.

32

. which the structure of the program is built incrementally as the modules are entered. Tho program is - ,

& v e . .
-]

_ The itﬂtgmgnt section - Qf the compiler scans -md generates code’ f()r the execution of CAMIL ‘ .
. statements, It calls the expresalcm routine’ as needed to compile expressions embedded within the - :

.. executable statements. oy

- Data Base Interface

&

The cﬂmpﬂer interface section Is necessary because CAMIL programs are stored.in a étructurcd direct

- access data base. Rather than appearing as a stream of characters as is often done; CAMIL programs appear

as blocks of lines of chatacters, These blocks, or modules, are created by an ondine editing program in

structured from a program directory which contains the disk address of module directorles. Each of these &

directories contains the addresses of source, initial values for data, and machine codeé modules for up to 30
- modules of the grogrm The ccmpﬂer reads the actual lines of-the program’ l;ay;‘ming the address of the

source modules to read the source modules from disk. After the module has hﬂﬂi compiled, the resultings
machine code, if any, is stored on disk, along with an initialization module for an3 locally declared variables

. if needed. The addresses of these created modules are then recorded in the modile directory page which is

rewritten to- disk after all entries on the page are compiled. There is also a record cantajning all lntcnnadule Y
cross-reference sets, and an error module containing the location.and type of any syntax errors, Any active
autopsy records are alsb attached to the program directory. .° , N s X
*'Since the cumpiler is written i the PASCAL language which provides no imerface to CAMIL the
PASCAL compiler has been modified to accept CAMIL file declarations and f¥le. access statements. “This
allows the compiler to read and write records on the data base whenever CAMIL,js runmng on the system,

- ~even though the compﬂer is runmng at a separate batch wntrol point. Separate CAMIL. files at dgﬁned as

vhi

" follows: ; R
PD!VS The*f!le of ail program address and sfafus Lnfa
PODATA® The file containing detalldd Info about programs o

MOt The file of al!vmadule and posf mortem ﬂLPEEtorles Ca
ERRORE. The tifte of -all error modules - .
SOURCZ® The ftlle of all source and post mortem data . - R
0BJECTS The flie of all code and Inltlal values modules oy
GDI . The lee ot all'ﬂarrial comolle daf:%hgforﬂs o o
(. y \ . v

-cumpﬂer ccxmpletmn Tha cmﬁpﬂer synchmmzes factions w;ththe prﬂgram edltm(fmm whu;h compllation

requests are made) by mspectmg and changing program status in the PD file, File accesses are made through
a group of procedures which centralize all data base access for maintenance. purposcs and process any I/O
€rrors wl'ur;h may have‘occurred while accessing the dat base. s . s

" Since the CAMIL compiley, was designed as a resident compiler, it ’was intended:to be 1mtia!izecl once

“and then would compile progrdms upon request indefinitely. Also, since the language definition includes

many *“‘built-in” routine libraries and variables for interfacing to the interactive terminal, these must be in
the compiler symbcl table’at the outermost lexical level. The interface routines acgomplish this. by first
creating a reguest to compile a program which contains these definitions and then establishing the resuitant
symbol tables at a point where the reinitialization logic will not remove them as it prepares to compile the
next requested program. The compiler is retumed to this canﬁguranon prior to compiling each program. Ny
Becsi\ﬂf the modularity of the program, the.usual overhead items such as code buffers, line and -

column counters H,;etc. must be reset as each module is entered. The interface logic performs each of these -
tasks and reads source data ifto the input buffer and.initializes the lexical scanner. Due to the partial ’:5"
cornp:lstion lngjc only modules which have been changed or affected by changs:s need to be prDEESsEd :
thus saving I/O a as well as prm:esgng time. ‘ , . :

::"_, 5
‘il ';;
LI . -‘
.. B A
: : '4'\,_ { :_
Y : N : .
' " ‘Compilatjon Drver - .,
'] . -

“The compilation driver activates the major sections of the complier and decides which modulés must .
be rétompiled.. The process begins t\laccepung a compllation request and remnitializing the-compller, which
is 8 very simple step. It then looks #b information §tored with the program to sce if anything has been
changed since the last compilation which would force the program to be totally .recompiled. Such
conditions might be a new version of the compller or executer, chanfes to the definitions of built-in data,

+ or compiler failure during the last tnmpﬂitin;f§.lfthh 4 not the case, a partial gompile is instituted.

v+ The compiler decides. what to cﬂmpild by kejping crg)sseréferenée sets fdr each module ‘of the
program,. It uses set logic to determine whether edito al changes to definitions ‘of datd or procedures will
ripple to the executable code modules. This is done by considering direct changes to definitions, changes to

¢ definitions used in subsequent module definitions, and changes which affect the addressing of variables in! |

subsequent modules, The program cditor assists- in this by keeping procedure headings actually separate -
from procedure bodies, although the. editor and listing program disguise_ this fact from the user. In this
mariner, it can be noted when the user has changed the hegding, thus causing modules which’refer to the
edited module to also by recompiled. Internal thanges do not of course requite-this and they are by far the
most frequent type of change. - o ' o

' - By performing quick set union and intersection 6perations, a'compile sct of modules is constructed
which is then used by the driver as it reads mogule directorjes (o detennine when it should activate the
madule compiler. During actual module compilation, the symbol table lookup routine enters the number of

the module which contains any identifier it has. found into a *refers 10" set for the module it is compiling.
This set will be saved for the partial compilatiori decision in the nexd, compilation, Naturally, any module

which contained errors in, the prcviuus-cmnpilm'mn must be recompifed, and this is reflected in an error set -
generated during®ach compilation, which is alsd factored into the sct logic. Actual compilation steps are
activated by calling a module compilef which first compiles declarations and then executable code as
appropriate for the module, These are activated as the declaration and statement sections, both-of which

' - e - L

Upon completion of compilation of all modules, the compiler then calls appropriate parts of the
interface section to store the error and cross-reference data and releases the program for. exccution or for
repair of syntax errors through further editing. ! '

call.the expression section, —

! " Lexical Scanner

Since_the CAMIL compiler i qiﬁglé:p;;ss‘ in design, the lexical scanner is designed to be called by the
token at each call or identify that there are no further tokens in the
al Variables, one of which.is available for each primitive type of

- parsing routihes and will return ¥ sin
. module. Seanning results are stored in Mab

literal.or tokeg that can be built from“harduters. The token encountered is categorized into a mafor symbol
s, class “denotes the fundamental type of the token, ie., particular reserved word, comma, parentheses .

ete. Some of - thesé findamental kinds are further classified to provide more detail. For example, a RELOP
or relational operator would be further classified into EQUAL, NOTEQUAL, LTHAN, GTHAN, etc. This
‘disal classification allows all major syntactic delimiters to be placed into a single PASCAL set, which is quite
important in the error recovery process. » ' '

The scunnet is designed to work with the information format of the CAMIL editor. The editor
removes any leading blanks on source lines and packs the string length in characters and the number of
, leading blanks into the last two characters positions of the last word of the string. The word size of the
' string 1s packed into the rightmost four hits of fhe first word and last word of the string, whith enables
both the compiler and editor to identify the size and last word of the string. The strings of source.gre
otherwise treated as part of a large packed array of seven-bit characters and thug the leftmost 56 bits of -
cach word contain eight seven-bit character fields. A single word can thus contain up to a six-character -
string, while the largest string can contain up to 120 characters. The four-bit word size field contains 0..15 {

."évv

| 34 3&'

A A - ,
g dtnnting a !tring jéngth of fiom 1..16 words. Since-the CAMIL character set can dennle up fo 256]
;hnrnq}e(Pn;ltlcjm; an eicape code (the LANG keyboard key) Ia used to switch from the permanent 128 . -
oot chal facteéry to the user-loadable 128 characters. The mfrcquemy of this alternation rcauns in good packing
ofLt Tordata within the' CYBER 60-bit word size, , 1

g0 The scanner is alsa responsible for constructing the internal rcpréscmﬂtiun for textual dixplny!.u;ed in
screen dl;pliy sentences. In this case, the text is ~compressed Into a special six-bit format essentially ready
for immediate release to the display terminal. In this mode, each line of the textual display, will be
. leftjustified against the marging in effect at the time: of display, thus achieving a very close relationship
between the appearance of th¢ text within thc CAMIL pmg:ram and its appearance on the screen when the
program is executed, -

The scanner wlll enforce lexical rules for the.composition of. llu:nh such as identifiers, numherq -md
‘strings, and will also enforce semantic restrictions such as the size of numbers, limits on numeric prqtcislnn .
or bit size for octal and-hexadecimal constants. Althnugjl a character pointer is not malntained éxplicitly --
for speed purposcs, the current scan position within the source buffer is nnmt,lined by the scanner and is
used by the etror reporting routine to construct the exact column position at which an error was detected.
Upon reaching an end-of-module condition, the scanner will retum an end-of-module token; and if within a ; A
quoted string or similar token, it will produce an- uppropriate error (nessage. This ls needed to handlg the

- o¢ ‘onal error of mixmal;uhcd quatations or failureto close u comment and allows tlu: umlpllcr to limit
the pmhlgn’\ 10 the module’ ln which thc error was introduced. : : .

B

K R) " D!‘:dﬂfn“(ﬂ (["“Pl{j o - |

The dcdamtlun scutmn U[llu. unnpllu is Lu,lnmtedr whm pm;edurc chl.lmtmm are f.z.;mm:d,‘whcn L e

dengnpllum nf any typcs dl:LLll’Cll in lht pmp:nn thc umslmuinn uf the symhnl table fm ulcnnhc ST
defined in the declarations, and allocation of storage to Lnnmn pmgr.un variables. Becanse CAMIL '
constants and variables may hc lmlmllfcd the declaration section must also umslnld the run time
s representation of initialized ﬁmngc and pmvulc for saving this lnfurumhun . ‘
CAMIL provides no forward procedure dech mtinﬁ All procedure mmln]m dcfmml on an cditor
din:ntnry page have their headings lotated together in a ‘single module of source text. The program editor A
provides a function key to allow the author to edit the heading of a procedure while editing the body -
maodule agd keeps track of the location of cach procedure’s heading within the single source module. Fhe
.declaration pfocessor rcnds this one source record for every page of pmgcduﬂ, dclmmtmns and cnh‘:r§ all
pmccdurc declarations fnto ﬁymhnl tables prior to compiling the-body of any ‘procedure. Thus all procedure
== definitions are R;m:es%cd prior to compiling any procedure references, cllnumtmg the need for forward
" procedure declaration whiletperforming minimal 1/ 0" to obtain this information. Mudu]c directories contair.
the names of segment type odules, and these are also anl’Ld into the symbol tables as av.ul*nhh: labels to

i

E

whn,h control may be transferred.

The declaration section is next applied tq .nll global level (private shared) mmlulu %‘mge the basic s

* format of CAMIL declarations iz <type spc‘uhutmns “name list> for any class of- smmgc (mnqlnnl
variable, name), a common TYPESPEC routine nf,pmvnded for processing all type déﬁmtmns while separate
routines (VARI)EQ, CONSTDEC, and NAMEDRTG) are provided. for processing the differing, requiremients
for each of these storage classes. Because of the limited numbgr of base registers available on the CYBER,

- all addressing is absolute for global storage in CAMIL., As a cofisequence, if the stzé of preceding modules is
changed by internal editing or redefinition of data within a preceding module, subsequent modules’ and any
modules which refer to them will. have to be recompiled also to obtain proper dddrgssmg The declaration
section must thus record the shrhnp alldress assigned to each nuululg hLLdUSL this aﬂ’e;ts L{n} partial
mmpﬂalmn demsmn '

L : .] s .

Q

EMC o o ;

Aruitoxt provided by Eic:

Q

Aruitoxt provided by Eic:

Y

4 .
-

th stod type. If explicit TYPE Kdentifiers are encountered, this youtine merely references the
existii@ W Mnition. If compound types aye structured, such as ARRAYs, RECORDS, or FILEs, a tree must
be structifred containing each of the imlmddad types. A special routine, COMPSPEC, is- pmv1d¢:d for record
and procedure headings since these are very' complex in CAMIL, Simple brpe-i such ‘as subranges, type
~identifiers, and user: defined clasgos are handled by a routine named PRIMTYPE, meaning primitive type;

~ whereas tmost other compound types ate hundled dircetly by TYPESPEC. The call to TYPESPEC returns a

. pointer to the type definition, which will be merely: the head of the tred structure. for compound type
definitions. A routine called COMPTYRE js available to determine.whether two typcs are compatiblé and is
used extensively during executable codé compilation to, determine whiether the types of two nperands are
agreeable or whether the type of an expression encountered is the type anticipated. This routine is also used
during declaration compilation to gnmpamj,m types ofconstantexpressions used for initialization with thé
types of identifiers they are bcmg used 16 lhlejlii,c :

A #ide function of the ’IYPLH’I o tine is to- determine the size in words and bits needed to.
represent the indicated type of. enuty Wh!: n-a lypc definition requests that storage be packed, TYPESPEC
will use knowledge of addressing rules hr determine the most efficient™ way of packing data together to
minimal size without sacrificing accesslbility, TYPESPEC will return, in the resulting type information, the
~ size of the total definition encountered. This information is used by the allocation routines in VARDEC,
CONSTDE iy and NAMEDEC to_determine storage allocation for the indicated defined identifiers. If an
lhltmhlxulun expression is encountered, EXI"RESSION is called with.the TYPESPEC of the identifier to be
nuu.;l,\ml ahd told to attempt to aceept o eonstant prressmn of the indicated type. If this attempt is
mLLcM\J] EXPRESSION will have computed the value of the gxpresslan at compile ime and placed the
nsultulg valug ut thie address in the object code buffer corrclated with variable being declared. 'If no
ln;tl.lllf-mun is found, the compiler will “2ero" the associated size of storage in the object buffer. In this
manncr “values: for all constants and inftialized variables are gcnemted as the declarations are compiled. If
apon completian of all declarations, all initial values are zero (a very common situation); thg compiler wﬂl

. note this fadt in the module directory, rather than saving the initial yalues so the program loader may use

ERIC

~of the type in wifich: it spcgmlum and u:u‘nmm;3 from”any crrors which are found in the, statem 1,'
compiles. In ofidr

" this information to initialize thirmodule_data aress to zero, Because rssultmb initial values are built into the

" code buffer, data areas are currently limited to the size of the code buﬁ‘Er but minor mudnﬁcahcns cculd
move this butfer to ECS, allowing it tuu&mm!u,mxndudhly in size. —

Declarations - local to a procedure or segment are located at the beginning of the lmdy and are”
unnpllul by calling, DECLARATION far cvery module, The same process described above takes place with .
the L‘Xu:j!tum that the PASCAL henp is marked prior to activating DECLARATION. Since any items
definedd tocally are unknown outside of the hody, any type data or symbol table. e.nmes created inside
DECLARATION are not needed after it has been compiled. Thus space allocatéd fur this purpose can-be
i‘LlllfIiLd mu ‘the module h.p. heen mmpﬂcd chuung the total space reqmmmant ﬁi:r compilation.

’,-1-: Ju e

Sldli.‘mént Cnmpler

P

The exccutable statement seetion consists of a manager m‘uﬁnei STATEMENT, that identifies which
type of statenient is being compiled, and u set of procedures which each recognize and compile one type of
CAMIL, statemient, Lach of these routings recursively: .1115 the EXPRESSION or STATEMENT roiitine to
compile emhaddc?prumum or statements. Fach routine is responsible for consuming an entire statemen t

to prevent any mtcmern youtine it calls recursively from running away: and ccmsummg
part of the statement handled by the’ al!m? poutine %*et of stop tokens is passed reclgswsly, own: through
the calls. Fach routine caled adds ity an stop: wmhnh to'the set it receives and pdss‘:es the result to any
routinie #t calls, No‘called routine may Gross any Jukm in this stop.s¢t while recovering: fr'rrl-syntax ermrs
unless the mkui could legjtun.ltgly helong 1o the smtungnt compiled by the ;allcd rDu,mi: In this manr}

multiple érrors which might be caused by “x‘qtmgf important reserved wurds such as “END”, “DO", 1

<0 are significantly rulmul Spectal Togic Lo treat unnnmnly cnwunm%mi c:rrnr»; has- hccn casily addcd to

;
‘- t [’

36

dc;lﬂratiun is pr()Lcsscd lht. TYPL bPlf foutine is Lalled to build the structural description A

"&_;

7

S

Q

ERIC

Aruitoxt provided by Eic:

Fa

o

the statemgnt remgruzmg routines since each may be individually tailored without altcrmg the LDlnpllE?;S
a whole. . '
~ Each statement in CAMIL rmay, provide unique opportunities for local op timization of ,the machine
mde FDr eﬁrnple in thg IF state’mem after Execu(ing thr: selcgtc::r expressiﬂn mashine registers will

statement routme takes advantagé Df t}us fai,:t by cumpdmg gm:le fc:r bmh statemsﬂts,as thﬂugh the

variables used in the selector expression are available in registers. This requires the IF statement routine to .

save the register status after EXPRESSION is called to comnpile the selector and to assert this information as
STATEMENT is called for both the THEN and ELSE statements. Thus unnecessary reloading of registers

!may be avoided for both imbedded statements. In a similar manner, all other routines which com pile

statements perform various degrees of optimization as possible to improve thesize and execution speed of
code. Since this optimization is accomplished as the code is being generated, no subsequent ¢ ptimization
pass is needed and information about the expressions need not be saved for Lon g periods of time,

. The instruction set for the CYBER computer doces not provide z relocatable conditional jump

statement. The effect.of this shortcomingis that branch instructions gensmtcd to implement statements

such as IF-THEN:-ELSE, CASE-DO-ELSE, FOR.FROM.TO-BY -WHILE-.UNTIL-REPEATDO, file-
operation-ELSE, and JUDGE-ELSE rmust be generated with knowledge of the absolute address where the

.codé will reside at run time, or a relocating loader must be used to modify the code prior to execution. The

CAMIL compiler uses absolute addressing, thus eliminating the need for code modi fication by a loadég but
creating the. potential problem of mapping code into the proper location. This problem is solved by
generating code as though all segments and all procedures execute in the same area of central memory.
Since only one segment is ever executing at a-time, this causes no problem with segments. Howeverseveral
pracedurt:s can be E:{Emtmg simultaneously, so a solution is reached by adiing 2 swapping action each time
a procedure is called or returns. When one_procedure calls another, the called procedure is swappedin from
ECS onto the code for the calling pmcedure Similarly, when it returns. the calling procedure will be
swapped back in. Since the CYBER can SWap mMemory-approx im ately 10'times faster than it can exccute
code, the resulting overhead is quite low and is often necessary to perférm anyway since the program {5
constantly being swappedinto central memory for time-sharing purposes,

Expression Compiler

The expression section of the compiler is responsible for the computation of all constant expressions
and for the generation of machine code fu. -ll computable expressions. The iniplernentation of procedure
calls in- CAMIL further requires that the expression routine generate all procedure calls, sentence calls,
function calls, and all user declared prefix, infix, and post{ix oper tors,

CAMIL resolves all expressions or subexpressions involving constants at cormpile time, This means
that any time the expression routint finds two constant operands and an opentor, it will merely replace
these with the result obtained from exceuting the operator on the operands, Since the compiler runson the

- same machine as CAMIL, the result is identical to executing the code at un time. This means that complex

expressions involving constants may be used to define other constants or to assign valies to variables, Sinee
CAMIL allows multivalued data types, such as arrays and records, it also provides multivalued constants to
use as values for these data types. To reduce the character size of these expressions, a repeat operator is
available to 'denote the repetition of a particular record field or array cell value. When these expressions are
constants used for initilization, the resulting multiple words of memory are defined by the compilerand
an assignment becormes merely a multiword copy rather than code to pack all of these lields, thus saving a
large quantity of code space.

The expression routine also generates the machine code tocreate multivalued ex pressions such as are
used as the values of records or arrays. The CAMIL declaration section generates identical structual
definitions for procedure parameter lists and record field lists with the result that any type of procedure
call, i.e., opemtor, function call, senetence, regular call, is effectively an opertor acting on 4 single record of

1 4

O

ERIC

Aruitoxt provided by Eic:

)

the tvpe of the parameterlist. The manufacture of such items on the stack is performed by a routine called
conipused expression ("COMPEXPR™). This toutine is the heart of all procedure call activity and is the
most complex routine in the € MIL compiler. Because a record ete. may contain OPTIONAL fields which

may or may not be present. AMPEXPR must repeatedly try to mateh the types of expression it i~
encountering with the allowabie types ot txpression which may appear in any field position, It is this

CAMIL to be defined in CAMIL rather than being hand-coded into the compiler asis commanly done for
/O statements. Doing it this way alo makes this power available to users for pertorming their own

facility which provides the flexibility which allows the highly complex *write” and “accept” sentences of

axtersions of the language,

The composed expression roatine also performs another very important function needed to support

the sentence extensibility feature, When a procedure or record definition includes a variant definition such

where PRIMTSPE 35 0 class contanvng INTNUM and CHR, then wlz;‘ﬁcv'r COMPEXPR composes an
ex prassions sucls as

(!,ii!" ¥ 3?!561 !lﬁg,

in which the nunsber 27,56 falls mto corwespondence with the variant field, not only will the value of 37.56
be assigned o the variant, but the valae of the coiresponding tag “NUM™ will be assigned (o field “p™.
Whert such o varant definition ts sed to detine the parameters of a procedure call o rsentence object, the
resul ting routinne may be called with any of the allowable types such as INTEGER, UM BER, or CHAR,
and zhe procedure can identify what type of patineter was passed (ot by e Xami ning the field **p™, Using 4

cd a8 dnoanay of records each

delirmition like this, the objeet ot a sontence sucly as Swrite i de
of the peneral type included above, Thus vsers of “write " may call the

contzining one optional variant ticld
asits and (he compiler tells the write wutine the type of each ot.the

routine with any of the allowalble van
argnrnents passed through the CASE varnant selector varable “p”. The toutine can of cowse branch
approprintely oo this type to CAMIL code to convert and print cach ol the Mlowuble types. Since the
clements of this arny are optional, the CAMIL program cin also test o see how rany of the array
elements have actilly been compose dand thus only process the eletnents which have actually been pa
COMPEX PR supports this by sexnng o field e the record which can be tested with the CAMIL "=

opetator tosee 1 the corresponding optional fiecld is NIT.

The EFXPRESSION routine ix hiphly dependent on thiee other roulines, 1.OAD, STORE, and
SELECTOR, for obtaining and reqiomay the operands it comptites, tor conpatibilety with PASCAL for
data amalysis purposes, these routines wee obtained by modifying the cogesponding routines in the
PASCAL compiler (e ferenee) to be compatible with CAMIL absolute addressing reapiirements” In this
manoier, it ispossible to wnte CAMEL el PASCAL record definitions which exactly mateh in addressing
field for tield. This makes it possible o write CAMIL programs forinteretive exec utior which record data
for smalysis by batch PASCAT progrims. This is exactly the method used by the CAMIL program editor
when it creates program directartes whiich sire i turn used by the CAMIL compiler and print progranis,
EXPRESSION s actually composed of ive levels of recursively activated procedures which cach implement
the aperttors which occnr on five difterent precedence levels. SELECTOR 15 used o generate the code
ecessary (o caleulate array, tecord, o panie e ferenees, while LOAD and STORE penerate code to actually
fer oot insert it into memory. Sinee CAMIL provides that existing

place the gelected operand intoa regs
operators may beeexpended to new pse defined tvpes while retaining their normal pre cedenee, each Tevel of

aperator must also cheek for the praseqee of nser edetinitions of the opetatos betore rejecting an

\‘llg ;

ERIC

Aruitoxt provided by Eic:

expregsion. These operators implement the numerous CAMIL builtin operators such as “line”, *“col”,

“min”, “sec” which are used to produce the highly readable C AMIL sentences.

V. CAMIL EXECUTION SUPPORT SYSTEM

The CAMIL run time environment consists of ‘a collection of programs and routines’ wntten in

" RASCAL, CCSMPASS PPU. COMPASS, and CAMIL. While executing, the system occupics three, batch

contfol points (mc.,ludmg the compiler control point), three peripheral processors, and SCOPE operating

Y stem modifications. Each of the six basic programs (three batch programs and three peripheral programs)

are separate progesses, and communication between the processes is accnmp]jsh&d through ECS and
centeral memory buffers. The basic components of the system (excludin gthr: Cﬂmpller) are:

t. - The terminal driver program: “*DRIVER™

2. The CAMIL executien program: “EXECUTER"

3. The CAMIL File Manager.

4. The peripheral routines: o &
a. Theterminal communications program: “INO” '
h. The CAMIL program timer: *“TMM”
¢. . The CAMIL disk interface program: “DAB”

5. SCOPE operating system modifications,

Terminal Driver

The basic function of the terminal driver programi.isto provide the ¢apability of cummunicating with
the terminals. The central memory driver progran: is needed to analyze the keypresses and perform the high
level asynchronous interface between the terminals and the CAMIL pregrams. However, the central
memory program is incapable of direct communication witht he 1/0 channels connected to the terminals,
so another process is required, The driver program communicates with a peripheral routine (INO) through
central memory buffers so that all terminal communications are taken for granted in the central mermory
program. The peripheral toutine, in turn, performsthe actual datalink between the central memory bu ffers
and the terminals through the proper /O channcls.

The terminal driver, “DRIVER” occuljes one of the batch control points and is written mainly in
PASCAL with a few COMPASS packing routines. It is brokeninto the following sections:

1. Initialization section,

2. Key input section,

3. Communication section.

4. Framing section,

5. Jobscheduler. .
6. Batch file maager section, "%

Each section is basically a separate section, but some intenction does occur between the job scheduler and
other sections. The sections are impleniented as singl e procedure calls for each section,so the main block of
the driver calls cach of the different sections,

Initinlization Section v

The. initanlization section performs the initializations of the variables used by DRIVER and also
initializes ECS which is shared with EXECUTOR. The initializations are accomplished by having the driver
call a periphetal routine to initiate another job at the executer confrol point which shares the driver ECS
ared. The job then initializes BCS and also places all of the varia ble initializations inte ECS and the driver
just doesdite ECS read toinitialize all of ity variables, Once ull of the required indfializations are completed,”

®

“Key Input Section

Communication Section

i

DRIVER again calls a peripheral routine to initiate EXECUTER at its proper control point and then waits
until EXECUTER completes its own initializations, at which time the systemis active. - :

The key input section of DRIVER interrogates the incoming keys from the terminals. DRIVER will
echobuffer, or ignore the incoming keys depending on the state of the program for the corresponding
terminal. The Key section supports features in the accept sentence which: C

1. Allow the user to limit the number of keys which may be accepted.

Process the tesponse when a specified number of keys have been accepted.

bl

Limit the keys to-upper or lower case letters or to digits.

Prohibit keys from automatic echo.

Inhibit the automatic response input arrow. V Q _

.. Accept input from the touch panel (a rectangular fing of infrared light emitting diodes along the
top and one side of the panel face w;ith' corresponding sensors on the opposite sides, which can detect a
finger touching the screen at 256 discrete areas formed by the intersection of 16 vertical and 16 horizontal
light beams). : : - v \

d @b

7. Schedule input autﬂmaticaily upon each keypress to support representative echéing of keys -

pressed in a manner selected by the program author. The key section also intercepts active function keys
and processes the synchronous or asynchronous meaning of these keys if they are currently defined.

The communication section of DRIVER receives messages from the CAMIL programs executing in
EXECUTER. The typical messages sent to DRIVER indicate some type of action the job is waiting on:
such as user input, a pause, a file cspcz}atiim, or just another time slice. DRIVER will decide what the jobis
waiting on and will perform actiors requested by the job. A job which is requesting a new time slice will be
sent to the scheduler, where it will be assigned a priority according to its utilization fate.
Framing Section X

The framing section of DRIVER is a synchropous routine. which must emit output for the terminal
interface program INO every 1/60th of a second. Each ferminal can receive at most one 20-bit parcel every
1/60th of a second, so the framer must break down the output going to the terminals into these 20-bit
parcels. It must also keep track of what parcels have been sent and to which terminal eachi parcel Is to go.
When a terminal detects a parity error in a parcel it receives, it,_;fejms the parcel and begins transmitting
data to the central interface unit that it has done so. The framer'recognizes this condition and requests that
the terminal tell him the number of the last frame « . llv received. DRIVER then resumes transmission
with thig parcel, thus insuring that no data are lost at :he termninal. '

Job Scheduler)

The scheduling section of DRIVER contains'three separate queues for scheduling CAMIL jobs. A job
is placed in one of the queues, first depending on the reason the job is being scheduled (keypresses being a
top priority) and secondly depending on the utilization rate of the job in processing milliseconds per
real-time seconds. Jobs with low utilization rates (< 5 ms/sec) are placed into the top priorityfiieue, jobs -
whose rate is & 10 ms/sec go into the next queue, and the rest of the jobs are placed into the final queue. If
a job utilization rate is > 15 ms/sec, it is placed into a wait queue for as long as it takes to lower the
stilization rate to < 15 ms/sec. This helps kecp CAMIL program response times consistent with each
execition and less dependent on the system load. : .

Jobs are rémoved from these queues by DRIVER and placed into an exccution airay which is
monitored by EXECUTER as space is made available in the array through the exccution of jobs already in

4 | | ,
,. : o 44

Y

the array by EXECUTER. Highest priority jobs (the first queue) are given three slots in this array because
of their low utilization rates. The next two slots aré for jobs from the second queue (only two slots due to a
higher utilization rate), and the last queue gets nly one execution slot. A simulation of this queueing -
v system (Reference 5) shows that the response times do not deteriorate significantly as system load increases
because utilization rates are limited and priority is given to jobs using reduced CPU time.

Having the scheduler within the driver program allows the driver to schedule CAMIL programs when
their accept or pause criteria have been met, and to allow a fast tesponse to user key inputs by giving them.
a high priority. The imbedded scheduler also allows the driver program-toinitiate a new CAMIL job (known
when a keypress arrives from a terminal not yet efined to the system) and toschedule the CAMIL batch
; file manﬂger program (when I/O requests from a bjtch job are requested). '

Batch File Manager Section

Requests for CAMIL file manager operatior]s-are placed into a central memory buffer in the driver by
the SCOPE file manager modifications. There i§ a CAMIL job associated with each batch control point;
which the driver schedules each time a file mandger request is received from its associated control point.
The CAMIL job thén calls on the file manager to complete the batch job file manager request. When the
request has been satisfied, the CAMIL program notifies the driver that it has completed the file operation,
and the dirver then suspends the CAMIL job until another request is made. A \wwipl> modification to the
SCOPE scheduler prevents the batch requesting program from further execution unii’ the I/O request has
been accomplished by CAMIL, '

B ~

Executer

The “EXECUTER” program occupies the |other control point of the CAMIL run time environment.
EXECUTER operates in two modes: system and user. The system mode. of EXECUTER performs the
system initializations and swapping of the CAMIL programs. CAMIL programs gxecute’in the user mmde
after the system mode swaps in the job. :

The EXECUTER is written mainly in PASCAL, with some routines and CAMIL pnmltwes written in
COMPASS. The CAMIL program area is also deglared in COMPASS to guarantee that the CAMIL program
" -area is always in the same absolute memdry [space even though the relative addresses of EXECUTER
variables may change. EXECUTER occupies 55,000 octal words of central memory space, which includes
all static memory rgqulrsmentq for 60 CAMIL jo

System Mude

The system mode of EXECUTER has itsjown memory space allocated fmr the run time stack of the
system. System tables and variables which are stpred in central memory are directly accessible to the system
mode. Also contained in this area are the address tables of system information which is stored in ECS, such
as program control blocks, systeni routines, an{l system shared variables. The system mode of EXECUTER
is broken into three procedures: swapin procedure, swapout procedure, function key processing procedure,
and one main program block. : ‘

The swapin and swapout procedures perform the swappiny of CAMIL programs. Once a CAMIL job is
scheduled the swapping procedures are.called to perform any necessary swappmg to execute the CAMIL
J(‘_ib » .

Before control.is passed to the CAMIL|program, the function key procedure is called if the job is

being scheduled due to a function key press. The function key procedure will search through the program
run time stack to find the latest activation of tie pressed function key.Once the activation of the function
key is found, the function key processor will ynwind the stack (if necessary) to the function key activation
level, and set the return address to the functipn key definition address. Thus when control is passed to the
CAMIL program, the function key processing gode is executed.

s 45

, “The mair program section of EXECUTER searches the execution array ('whit,:h the DRIVER fills)-for
CAMIL jobs to execute. When EXECUTER finds a job to execute, the proper procedures.are called to

swapout the previous job (if necessary), swapin the new job (if necessary), and perform any function key .
processing (if necessary). Control is then passed to the CAMIL program, and the EXECUTER enters the

" user mode. When the CAMIL program re-enters the system mode, EXECUTER searches for mare jobs to
swapin. _ . _ . ' o
After searching the execution ;m';yi EXECUTER will check the file operation pointers to see if any
‘physical 1/0 operations have been completed. If there have been, EXECUTER will swapin the jobs that
have had any 1/O operations completed. When the EXECUTER has no more jobs to execute and no I/O
perations have been completed, it relinquishes the processor to allow the compiler and batch jobs to have
chances for the processor. (

. * 3 £ .

User Mode . . ,

The user mode of the EXECUTER uses the CAMIL program run time stack for variable storage. The
CAMIL ptogram is swapped into a section of EXECUTER central memory space and given control of the
processor. When the CAMIL program is swapped into. central memory, the timing routine is notified-to
begin timing the processor usage of the CAMIL program. The CAMIL program is then allowed full control
of the processor and must voluntarily relinquish the processor back to the EXECUTER. If the CAMIL
program does not release the processor before its tirne slice ends, the timing routine notifies the CAMIL
program to release control of the processor by setting a flag which the CAMIL program automatically
queries through code generated at points where the program might otherwise enter an.endlessloop.

The CAMIL language has many built-in primitives which need to be accessible to- the user-program.
Most of the primitives could be coded in CAMIL itsel f, and many are, but for efficiency sake, there are also
some coded in COMPASS and PASCAL. !

The CAMIL primitives which are coded in COMPASS include the arithmetic functions (SIN,COS,
etc.), file manager linkage, procedure calling linkage, string operators (concatenate, search, etc.), and
conversion routines (string to integer, integer to string, etc.). Linkage is made to these COMPASS primitives
through special handling in the compiler which places the parameters in spegial registers. The JUDGING
primitives, reprieve logic, and control transfers (system->user mode) are also written in COMPASS, The
total set of COMPASS primitives occupies 2,316 octal words.))

Some of CAMIL primitives are programmed in the PASCAL language and are physically located
within the-EXECUTER support programt. The linkage to these procedures is similar to normal CAMIL
procedure linkage so that the compiler need only make a minor change in the narmal prdcedure calling
sequence to call a PASCAL primitive, The local variables of the PASCAL primitives are placed onto the user
run time stack in the same manner that local varables of CAMIL procedures are added to the’stack.
Because PASCAL procedures do not have code compiled in to check the CAMIL time slice flag, those
critical routines which may use resources common to all programs will not be interrupted until they have
completed an entire logical process, although their exccution time will be allocated to the CAMIL program
calling them. The file manager, write sentence, accept sentence, and procedure and segment swapping are all
implernented as PASCAL procedures. ’

Most of the CAMIL primitives are written in CAMIL itself. These procedures are stored in a section of
ECS which is reserved for system procedures. When a system procedure is called, the procedure swapping
mechanism sees that the called procedure is a system procedure and swaps it in frgm the system procedure
arca. 'The system procedures also have a special central memory area which they sﬁviapped into. This is to
allow the system procedures to reside in central memory longer and reduce swapping. Some of the
primitives which are implemented as CAMIL procedures are write large, circle, draw, crase, slide, echo, ok,
no, sized, pause, connect, dots, external, and all of the system functions available with the AUTHOR key
(momitor, talk, autopsy, etc.). The write sentence has not been made a CAMIL procedure due to the many
procedures used by the write sentence. Because the wiite sentence is used quite frequently, and many
procedure swaps would be necessary for cach call of the write sentence, it is resident in central memory asa
PASCAL procedure. ‘ :

P 19

-

k0

Q

ERIC

Aruitoxt provided by Eic:

Because the CAMIL code is machine code, mode errors become possible due to improper afithmetic
operands. The reprieve logic of EXECUTER performs an interrogation of any mode errors, If EXECUTER
was in the user mod? (a CAMIL program was running) when the error occurred, the autopsy routine would
be called to store data for an autopsy of the program. The CAMIL code also provides run time error

checking of pointer values, array subscripts, and subrangé values. The reprieve logic must also check for a

mode error caused by run time arithmetic errors and propery report the cause of the error when it can be
determined (the CYBER computer does not detegt certain integer overflow errors). The compiler assists in
the detection of logical errors by compiling code to check for the conditions mentioned above by compiling
a jump conditional on the checked for condition. Rather than generating a jump to a specific error
processing routine, the mrn]xler creates an address field in the jump instructiost to a nonexistent address,
consisting of a high order address bit (to force nonexistence) followed by the line number in the program
and the logical error number, all of which will fit into the 18-bit address field used in the CYBER
computer. The resulting pseudo address causes the processor to halt and the CAMIL reprieve processor can
then decode the “faulty” instruction into its actual meaning. Encading the test in this manner saves more

than 30-bits each time this type of test is performed and allows error messages to be related to the lme in

the CAMIL source pmgram at which the error occurmred.
File Manager

- :
The CAMIL File Manager System is a completely closed file system (only accessible through the

'CAMIL system) and capable DF h;ndljﬂg maﬂy diffefre.nt file Dpefatians The basic LGDLEP(S of f_he ﬁle

stmctured ﬂe ;pncgpt (tha (;Dmpller knaws the forrml def‘mtmﬂ ufall the ﬁles in th& system 50 tlle use in
programs must be consistent with the formal definition of the file); to provide indexing, direct access, and

_variable length files in an efficient manner; to allaw batch programs to communicate with the CAMIL file

system zmd to pmvidL a simplc and unmmpmmisablf: ﬁls gecudty system All of the goals of the file

Th. basic laglc of the file systcm is contained'in one pmﬁedure (wﬂ,h nested inner procedures), and it
resides in the CAMIL executer program. Other components of the file system are: the peripheral routine to
communicate with the 844 disk controller, and CP monitor modifications and driver program linkage (to
schedule the special CAMIL batch file manager interface program) to allow batch programs to communicate
with the CAMIL data base. ’

Efﬁ;lent manner stsxblag Smmf: uf the fllc Lunstm_c,ts were llmlted frcjm the 0ngmal 1mplémcntatmn in
order to keep the file system efficient, but sufficient flexibility was insured to perform all of the 'desired
operations. This type of implementation strategy led to a highly successful and easy to maintain file system.

All but an insignificant portion-of the file manager logic is programmed in PASCAL and is resident in
the EXECUTER program. The logic is broken into small procedures to perform each of the different file
c’rperatians*(READi WRITE, DELETE, etc). These procedures in tumn share other common procedures to
perform operations such as record number verification, physical buffer allocation, and physical disk 1/0O.

“Each job which requests u file operation enters the re-entrant file manager code, and since the file manager

code executes in user mode, all of the needed local file variables are placed onto the CAMIL run time stack.
Because the PASCAL file manager code cannot be interrupted by another CAMIL job (the PASCAL cod
decides when to relingquish control), no synchronization is necessaty between jobs requesting (it
operations. ' '

Because the file system is shared, all current information about system files is kept in ECS. This
nlluws all of the jcrbs requég.ting ﬁle opemtiuns access to the infmnﬂation withaut thf: need to reserve

C‘AM]L system are stured in EC‘S 50 tlnt a file requeﬁt can EaSlly be venhed wnhnut 1 dlqk rcqueﬂ Also
while a file is open, all of the extra information which is needed for an open file (butTCrs bit maps, ete) is
contained in ECS and referenced through the resident file information.

e

ERIC -

Aruitoxt provided by Eic:

T’here are three types of files: direct access, indexed, and variable length files (thtxugh direct access
and indexed files cdn be accessed sequentlal_ly) The most common type of files are the direct access files.
Direct access files provide the capability of accessing fixed length records at very high speeds. This is
accomplished by being able to compute the physical disk address from any given file address, so that the
only physical I/O required (sometimes none is if ‘the record happens to be in a.buffer) is the actual data

‘transfer (note: The record bit maps must also be b?cked up to'disk when writing a new record, but the

backup operation is part of a single I/0 request). Because direct access files allow packing of records (more
than one record per physical block), two physical gperatmns could occur for a write file operation on a
packed direct access file (one to read the physical block, insert the new fata, and then write the physical
bloek back out). .

The indexed files are designed to provide a high'speed indexing method to striichyred files, ?They are
fixed length records (preferably small records), and the entire file resides in ECS. Thergfore no physical
requests are necessary for read operations, and only one request (to back up the file gn disk) is required for
write operations. The typical use of an indexing file is for indexing purposes. The recgr, associated with the
d&swed ‘indéx may centain.access flags, status sets, and direct access file addresses. The direct access filr
addresses are used to associate data located in direct access files with the specific index. The direct acceas
address can then be used during the processing of data associated with the current index so that all further
file operations are as efficient as possible using computable disk addresses. This approach eliminates the
need for index searches and index blocks (which consume time, space, and isk accesses) imthgut imposing
any real burden on the programmer.

Variable length files provide a means of storing records of variable lengths. They are similar to direct
access files in that disk addresses are directly computed from the addresses of the records. The main
difference is that éne cannot direct where a record is to be stored when writing out a record; instead the file
manager assngns a new record number cach time a record is written; Also, it will d\elete the old record (if
rewriting a record). This is necessary because it may not be possible to fit a record back into the same
record position it came from (the record could become larger), so the file managfr w1ll automatically delete
the old record and insert a new one, returning the new recotd’s address. The nugber of necessary physical
I/O requests per record access is at most one per request (none if the record is already in a buffer), since all
disk addresses are computable and the disk driver routine will read in“only the needed number of sectofs for
variable record reads. As with the direct access write operations, backup of record bit maps is also part ofa
write request; thus, only one pause for physical 1/O is necessary per operation, although more than one
transfer may take place. ’

The file manager has its own peripheral routine to handle all of the CAMIL data base requests,
therefore, the disk addresses computed by the file manager are directly handled by this routine. It is the use
Of this special routine which also allows the record bit maps to be stored in the same request as a wriie
request, thus cutting down on swapping and waiting time overhead of producing two physical requests. The
data path between the peripheral routine and the file manager is also minimized since the peripheral routine
transfers the data directly to or from the file ECS buffer, .

Requests from a batch job requesting a file manager operation are processed identjcally to CAMIL file
manager requests except for the data transfer portion. When data are to be transferred to or from the batch
program, the CP monitor modifications are called to perform the transfer. In CP monitor, the data are '
simply transferred directly to or from the file ECS buffer from or to the batch program Efitral memory
buffer. Thus the data are transferred in a most efficient manner between file ECS buffer ant batch central
memory buffer without any need of transfer buffers or extra movement of data.

For each file manager request that a program makes, the file manager checks to see if the program has
permission to perform the requested operation. If the program does not have the proper authorization, a.
file security error is generated and the operation does not occur. File security is accomplished by
associating a program name with aset of permissible file operations. Each program which is to have its own
sef of access PI‘IVIIEE,ES to a file must be placed in the file security list by the FILFfDIT prograim. A default

iib
Lo

-k
A

set of permissible file operations can also be specified, in whlch case any program without special privileges
to-a file would assume. In this way a file can have a nondestructive set of default privileges so that other
prograins can be allowed to inspect the file without giving specific read pe:rmissmn to each individual
program. Because the file manager operations are defined in the PASCAL compiler as well as in the CAMIL
compiler, the file security by program name also holds for batch file manager requests. Because of this, and
the fact that only CAMIL and PASCAL programs can access the data base, the security of the CAMIL data
base cannot be cgmpmmlsed by any method, since only specified programs can be authorized to access
data base files, and theére are no passwords which can be stolen. -

£

Operating System Interface

, The most extensive modifications to thg SCOPE central memory monitor program have been made to
allow batch jobs to communicate with the CAMIL file manager system. These modifications are
incorporated into the RA+1 section of the P monitor because of the expected frequency of use of the file
manager requests. ’ ’

.A batchjob issues a request to the CAMIL file managﬂr by caﬂmg DIO (resuient in RA+1) which
passes pertinent’ file information to a batch file buffer in the driver. (The baich job is suspended until the
file manager completes the request, at which time the job is resumed.) The driver then schedules a CAMIL
job which calls the file manager routirie to perform the relevant ﬁle operations.

The filé manager handles batch and CAMIL file manager operations in a similar manner, except when
transferring the actual data to or from the program’s buffer. In the CAMIL case, the file manager can
simply read .or write from -the file ECS buffer into the program central memory buffer. The batch case
however requires a call to “ITO” (RA+1 resident) to perform the transfer between ECS and central
memory (the central memory space belongs to the batch job). In both the batch and CAMIL case, hawever,
- the data are transferred betweenECS and central memory only once.

- 'The CAMIL system also requires special scheduling of the driver, EXECLTTER and the compiler. The
- uriver must always have the top priority of any job © ‘he computer because of its synchronous nature. The
EXECUTER is next on the list of special priorities, siice an interactive job requires a faster response than a
batch job. The compiler must also be given a priority over batch jobs, since an interactive user is waiting for
the results of the compilation. Modifications to the SCOPE scheduler were made to accomplish the special
scheduhng requuemerits with minimum interference with the normal scheduling nf batch jobs.

Penghergl PIDC'JESSDE Routines

INO ; .

To communicate with the. terminals, two channels are dedicated to the system terminal hardware
interface units. The “INO** PPU routine commuificates between the driver and terminal hardware interface
units through central memory and the data channels, respectively. _

One channel is de icated as an input channel. The INO routine queries the channel for incoming keys.

“ When a key is received from a terminal, the hardware will place the key (along with the terminal number
the key came from) on the channel, INQ will then place the incoming information (assuming no parity
errors occur) into a circular central memory key buffer in the driver. The driver properly responds-to the
key strokes, either echoing or buffering, ctc;i dependmg on the state of the pragram running at that
pamcular terminal.

The output channel npemtes in a synchronous mode, since the terminal hardware requires output for
the terminals every 1/60th of a second. yThe output channel can send each terminal only one 20-bit parcel
each 1/60th of a second. INQ awakens the driver to prepare a stream of: these parcels, encoded with

' termjnal number and data, to meet the terminal hardware demands. Even if no data are to be sent to a
'.termmal the hardware demands at least one parcel to be sent to-an undefined terminal every llﬁoth ofa

'second.

49

45

Q

ERIC

Aruitoxt provided by Eic:

" Once the driver has created a stream of parcels to be sent to the terminals, INO reads the information
from central memo:y and then transfers the information over the output channel to the terminal hardware
interface unit. The interface unit breaks down the information and sends the data to the proper terminals.

1

DAB. - . ' .

The CAMIL -deta base is totilly separated from the SCOPE file system, This separation was
accomplished by developing a new 1/0 routine which processes all CAMIL dﬂta hase requests. This routine
communicates with the CAMIL executer through a request buffer which is pmpared and monitored by
executer. The new routine transfers data from the CAMIL data basc on disk directly into a data buigfer in
ECS where it is retrieved by the requesting program as soon as it can be rescheduled. This eliminated -much
of the overhead and unneeded data shuffling incurred with the CDC supplied software. It also provided
greater isolation between the two systems (CAMIL and SCOPE). The drives used for the CAMIL data base

, - are not known to the SCOPE systemand the twg systems are thus mutually inaccessible, except thmugh

programs capable of attaching to both data bases.

Data base I/O requests are handled on a first in, first out basis. File manager (FM) determines when a
physical 1/0 request will be needed to satisfy a CAMIL, request for data. File manager constructs this

. request and places it into the DAB request buffer. Essential items in the request are the logical pack

number, cylinder number, initial sector number, the source/destination ECS address, and the number of
sectors requested (for fixed length records). w
The CAMIL data base consists of up to eight 844 disk packs. Ea;h pack has a luglcal pack number (0
to 7) and a pack name. Each pack is considered by FM to be error free. FM sees a packas 410(0 to 409)
cylinders of usable space. Each cylinder is a logical set of 452(0 to 451) sectors. A physical cylinder has 456
sectors, the last four of which are used by DAB to replace up to four defective sectors per cyhnder thus
maintaining the illusion to FM that every pack is flawless. L

The sector substitution table is initialized by a pack initializer PPU routine, IPE IPK writes and

subsequently reads each allocatable sector on the pack and manufactures a substitution entry for every ~*

sector which is incapable of being reread. IPK also blank labels the pack, so that it can be permanetly
labeled by the FILEEDIT program which is used to define the content and structure of the CAMIL data

base,
TMM
The peupheral routine which times the CAMIL jobs is TMM. The EXECUTER tells’ TMM when to

begin timing its use of the processor and the time slice to be allowed. TMM will time the use of the

processor, continually placing the number of time Units used by the job into central memoty. In this way,
when the CAMIL job is swapped out, the processor usage is immediately available to the swapping routine,
and no special call is required to get it. If the job uses more CP time than the time slice allowed, a flag in
central memory is set, which all CAMIL programs periodically check, md the job will voluntarily relmqulsh
control of the processor.

TMM also updates the current dzltc; and time in the CAMIL date and time areas when it is got.timinga
CAMIL job. This allows CAMIL programs to dircctly access date and time information through system
defined variables instead of special procedure calls usually found in other programming languages.

V1. CAMIL AUTHORING SUPPORT FEATLIRES AND-AIDS

" Because CAMIL is a highly flexible language, it was desirable to implement some systen?x functmns in
CAMIL itself. All system level operations controlling access to the CAMIL system are performed by CAMIL
pro cams. User LOGON passwords, systen file definitions (including security access privileges), program

diting, and even CAMIL program loading are all performed by CAMIL programs, Becanse these programs

I

46)

;

2!

Q

ERIC

Aruitoxt provided by Eic:

requested, and interrogation of ﬂlggal requests . B

£

: ’ _,) e ,
are wntten in CAMIL, they prmnde an “intelligent” interface between the userand the CAMIL system and
can be easﬂy updat&d to reflect systém changes. CAMIL programs prmm;le the §Er with menus, help wht:n

‘One important facility is not a separate prog:mﬁ but is imbedded in the EXECUTER \:ngra:n This
famhty allows the author of a pmgam to interrupt execution of the program by pressing an “AUTHOR™
function key on the keyboard. The author key allows him to immediately autopsy-the progfam, look into
the data stack of the program, restart the program, communicate ‘with other termirals, or'monitor the
activities of another terminal in the system. The monitor function provides for future access to a number of
interactive br&akpmntmg and analysis facilities which may be added to the system.

The functm{) of cach of the major programs used to unpl;ment the system will now be explained.

- LOGON Program -

¥

When the system is running under CAMIL, every terminal is established as either unused or running a
CAMIL program. When a terminal is powered up, it emits data to the computer indicating this condition.

- The CAMIL 'sysiem establishes a data area for the terminal and begins executing : program called LOGON.

In anything further done at that terminal, it will merely. be jumping from one CAMIL program to another,
i.e., LOGON-LOADER-EDITOR-+LOADER~+USERPROG~+LOADER, . etc. The LOGON program
initializes the terminal and identifies the user by associating-him with his user privileges through his
LQGON ID and security password and information, His status in the system and everything he is permitted
to accomplish are controlled by this information. As additional security is needed, it is provided by the
concerned programs, which protect the data base, and apply restrictions based on security data in his user
records. As an example, certain functions might only be allowed to be performed by certain programs run
. by certain people at certain terminals in certain buildings during certain times of the day In this manner,
multiple restrictions are placed oni critical data areas so that penetration of a single person’s personal data is
inadequate to compromise system security. Final control is retained by restricting data base access to
programs by name’ (each ptogram name is unique) so that if a program could be copied and modified to

~ remove some security checks, it would st‘i’lllée denied data access by virtue of being a differgnt program.

The role of the LOGON pmgr:im, m this process is to identify the person trying to log on, determine
whether he is permitted access from the log-on site, and apply restrictions as recorded in his user records.
Since the user will always be runnmg some CAMIL program or submitting a batch program frum some

" CAMIL program through the program editor, security is retained by the CAMIL system.

The LOGON program also has such pegpheral functions as to display run time error information if a
>*CAMIL program must be-suspended, dlspldy resource utilization factors and display lists of programs
permitted to the user. The successful operation of the LOGON program depends upon a user data base
generated by another program called the user editor whichcestablishes user permissions.

ngr n Edntnr

All CAMIL programs are created .md reside in the AIS computer. Pmbnmq are intended to be

- authored on-line and updated interactively. For this reasori, a powerful but casy to use editor is an essential

‘part of the programming system. The CAMIL editor was-;nsp,lred by the PLATO IV edit program and was
initially written in the original CAMIL language implementation. It has now been rewritten in CAMIL II,
resulting in an approximately 50-percent reduction in source program size, although the original editor is
retained for use when the old system is executing.- ;

2

The editor is intended to allow modular program construction for.ease of access without causing
annoying specific actions to be performed to link the resulting program modules. To support this, the
CAMIL system, local PASCAL compiler, and a print program have been written to use or disguise this
modularity as appropriate, thus allowintg the user to ereate modules corresponding to CAMIL or PASCAL
routines or blocks of text, ThL‘ gditos has four primary levels of npcmtmn program, directory, module, .uul

, te;mul

5,

Q

ERIC

Aruitoxt provided by Eic:

Py

: ‘ ' i
Program level operations are those such as creating, copying, deleting, compiling, eataloging, printing,
or checking the status of a program. These are accomplished on an entry page as options available through
single keypresses. The most frequently, performed step from this page is to enter the directory level of .
operation. /All programs are divided inté major dircctory areas; in the case Gf CAMIL prograitis; these areas

are -cmreiate‘d with specific divisions of the program and given the names: Shared, Private, Procedures,

Segments, Errors, and Autopsies. Each of these is mercly -an entry pointtoa chain of directory pages, any
one of which can' contain up to 30 entfics and is linked to the subsequent and preceding directory pages.
The directory is presented to the user as a menu of module .names, cach witli@ number that can be used to
enter the module for editing, In addition, directory level Tunctions, such ds adding, deleting, rearranging,
renaming, and copying entire modulcs, are performed at thiis level, Also module level print flags can be set
for each module so that selective printouts can be accomplished by the print program. New directoriés may
be added following or preceding the current page at this fevel. The user will normally select a module for |
editing by entering the module number,.on this page, which moves him-tg the module level of editing, '

At the module level, the user-is automatically provided a displayed set of lines representing the -
current location in the module. The user can set the number of lines that is seen by default to any number
of lines that will tit on the sereen; the system will initially display five lines. As the user moves forward or
backward through the module, the lines that are displayed are numbered with small numbers from 1 to.31,

and the user refers to lines by these numbers. Since the numbers are completely relative, lines may be added
or removed, and the system will constantly display the updated text with familiar numbers that always
appear on the satyedines of the sergen. Since these numbers are kept as small as possible, typing is kept toa
minimum. If the user wants to see more lines than are displayed at any moment, this cari be done by
pressing ‘the space bar, and the edigor-will double the number of lines currently on the screen and add this™-
many more lines to the display. Lines already on the screen do not scroll or move as in some terminals so
they can be casily read as new lines are being added to the screen. The user can move forward through the
text by simply pressing the "NEXT" key, which will move the current location to the line following the
line currently displayed at the bottom of the screen, and. then redraw the screen to display the default

‘number of lines.

Commands availabile at the module fevel allow entry to a textual levet of editing in which lincs may be .

inserted or replaced. In each of these modes, the user deénotes insertion to begin after or replacement to
begin with some line which is on the screen. The screen is redrawn with the referenced line near the top of .

the screen, and with the user cursor nnder the line of entry. Ininscrt mode, the line inserted after is placed
into a special copy buffer. Editing keys on the CAMIL keyboard allow this line to he copied wholly, word’
by word, ar letter by letter into the user input buffer, alopg-with any new characters to be added to the
fine. Other keys allow things copied or entered to be crased wholly, word by word, or a lettér at a time.
Still other keys allow the line, words or letters to be removed right to left from the input buffer as though
they were being erased, but then returned to the screen and to the user input buffer at the press of another
key. The combination of thse keys allows existingdines in the module to be copicd quickly to the point ofa
mistake from either the left or right direction, a correction to be inserted into the line, and the rest of the
line to be copied without error. In replace mode the copy. buffer is merely loaded with the line to be
replaced so rapid updating of errors, withont introducing new typing ertors caused by reentering characters
@ither mode the user can skip over lines he

which are already correctly entered into the line, is possible. In @
does not want to change thus allgwing him o easily move lh{duﬁh an arca containing errors and npdate or
insert after each<ding as needed without having to redesignate Wwith numbers which line he intends to alter
next. Because these keys allow the user to directly edit the characters in lines, these keys perform the

function of numerous string vriented editing commands tound in more conventional editors. As a result

the only string oriented command is one with which a module may be searched for oceurrences of a
particular string, with optional replacement by another string by progsing a function key.

The ‘commands available at the module level allow the user to move forward or backward by the
nuruber of fines displayed, to the beginning orend of 2 moditle, to the lines following the lines currently on

48
i

&

»

Q

ERIC

Aruitoxt provided by Eic:

B

the kereen, or to the folluwmb or preceding module by the press of a s&le—k{sy@ Lines may be deleted by
cnte,’,ng_, IhL :tarunb and L‘Pdlms llne numtu o nmy be saved intoa \JVC hulf;‘ ‘lnd .mlml to some

ll in th; mlmng uf stmuurui prugmnuahcr; mdumn;g is afh.n uscd to dlspl.ly progrant struuurc In
all coptwiands referring to more than one line, the dc-ﬂp ated lines are encircled by the cditor 1o confirm
that the proper lines have been denoted betore the operation is conipleted, thus giving the user a chanee to
chamjc his mind before making a major error.

user leaves

To simplity pmbmm storage, changes made to a module are not recorded on'disk un(ll
the module, at which time they are automatically recorded by the editor wnhuutﬁny explicit-action bei
performed by the user. A special escape is provided which allows the user to leave the module without
storing the changes that have been made. This is normally used only when some major blunder has been

made, such as deleting a large block of material by aceident, which the user does not want to become a ”

permanent change, If a module is emptied, it is automatically removed from the program directory, and if a

new module is being created, it will be automatically entered into the program directory at the place it is

esignated to he added.

Another usctul function supported by the editor is the automatic tab function. In automatic mode,
tllc tab key will indent to the line which is being inserted after or replaced; this is useful for indenting
structured programs or for entering indented textual material. A manual mode is also available where fixed
columns specified by the ustr can be used when tab is pressed; this is useful for editing programs written in
assembly language or for entering colunmin sensitive ddt.l ‘

To assist in the development of structured programs, the editor searches for leading BEGIN and LN[}
symbols and the special CAMIL beginend characters. When vertically’paired symbols are found, the editor
will automatically connect them with vertical lines each time the screen is redrawn. (This may be scen in
the CAMIL examples included in the appendix.) An -automatic grid function is also available which will
draw vertical lines at designatable character intervals, eugh time the screen is fedrawn. to assist in placing

n‘tlctummul positions whux tlu terminal is used as 4 pseudo keypunch machine
e;.

column critical data at
for card format oriented data cmn

Automatic Error Mode ~

Vv

When a CAMIL or PASCAL pr\;?r;un is submitted for compilation, the editor g{:ncr%llc‘ s a request for

the compilation by routing the request into the system input queue. The request includes only the name of,
the program to be compiled and any unusual parameters which are to be applied, The u)rrupﬂndmg
compiles obtains the program source byzreading the program level directory, then the module directory
pages, and in turn the source modules frome IllL data base. No physical medium other than disk storage is
used to retain the source information, To be eonsistent with this phllmnphy’ the compilers do not generate
pragram llstlug: as the programs are compiled, bt rather.if an error is enconntered during mm[nlntmn. an
::nti‘y is made in an error record, indicating the module ninnber, tine pumber, column numhe,, and error
number of the encountered problem. At the end of the compilation this error record-is recorded on disk for
use by’ the program editor. When the user requests to see the error module dire ctory, the error madide is
line position to the line containing the

u%cd to read up the module containing the tirst error, set the curren
error, draw a ptA;utcr to the place in the line where the envor wad dmnumd. and display the error nutnber
scription of the meaning of the error message at the bottom of the screen. (A hard copy

and an English d

of this display is included in the appendix.) In this munner, the author need not be at the central gite with

the printer to use the systent, The resulting enviromment is much faster to use than a paperor screen

progriams grow in size. (The AIS adaptive model used for student Tesson nanagement G tkes approximately? -
4% minutes to list). Function keys allow the user to request the display-of the next efror as needed and-then
to po to another module to Ax the problemy, such as an undeclared ideéntifier, without causing pmlxldlh
This facility combined with vapid p.lrtl 1 glnlultmnn can reduee eomplete turng nnuml cyeles to less th.,un 11

equivatent of a listing with error messages embedded in the program text. This is particutarly true a

minute, . : LT

O

ERIC

Aruitoxt provided by Eic:

The edltur also provides access to aulopsy reports generated when a program fails in operation. As
explained in another section, the entire dara context of a program is savéd in the event of such a failure.
The autopsy program mnemonically dumps these data, and a source module is constructed for each local
and global dath area and for the built-in system variables for the program. It also builds a directory for these

- svurce modules so that the user can select wh:gh data area to observe in the same way that a module is”

selected to edit when editing normal ;11*(15:&151 sources. These directories are also strung together so that the
user can Jook at all of the autopsies which have occurred, independently of where. the prograin may have

“been running within thé. AIS netwofk. In this manner, field problems are réturned to the program author,

who then has a d;sumhcﬁ} of what was happening.at the moment of failure, even though the author was
not physically present 4t the time.-All norma) editing functions are available so the author may search for
desired identifiers or values or may scroll through the autopsy - lmyhng for something.which seems
abnormal. The combination of these two interactive debugging aids” g,rmtly enhances the usability of the
system PM‘HLU]'H]Y for remote program development.

The editor program, which was written in original CAMIL, was translated into CAMIL in about twu
work weeks, and reduced in size about $0% . The resulting program is approximately. 8,000 words of source
code (2600 lines), compared with 32.000 words of source code (5400 lines) far the program written in

; }nngm.ﬂ CAMIL. The resulting, decrease in line size is due primarily to the more efficient syntax and

sentences of CAMIL I, and the additiopal seuction in code size is due to a 35% improvement in source
code %t()fdgﬁ; density in € AMIL 11 editor format, <

The file of information. usul by the LOGON program js Lﬁ;dtLd by another program called the user
editor, This pmgmm dHows ‘an authiorized person to create ant nfodify records for other people. Naturally,
administrative controls must be applied, controlling who has the ability to extend thi¢ privilege to other
persons, but this issenforeed by the user editor which is the sole program that can L(llt the user file,

The user editor will ot be explained in depth, but it contains th(‘ necessary dﬁplays to establish,

survey . delete, and modily user records,

S

The CAMIL file sys(ch managed interactively through the program FILEEDIT. With this prograin,
file definitions are inter: utiwly'\‘rcatul edited, and Jeleted. The resultant file definition file is used at

system initialization tinte to load system file information into LEC ‘%

When creating a new file defigition, the file editor solicits mtnmmtmn (file type, record size, buffcr
size, number of buffers, sccurity phivilepes, number of records, cte)) required to - define a file. Fronit the
obtained information, the file edit pYogram computes the total disk storage space: rcqmrc(l to hold the file,
whiclr is then used by thefrogrum whien afldeating physical disk space for the:file.

When the user is satisfled-with the file definition, physical disk space im the ﬁlc‘ must be allocated.
The user may optionally direct “where it will.be physically located (by disk pack and Lylm;JLrS) or iy
allow the FILEEDIT program to find the requiréd disk space. -

The file edit program also provides for general: disk maintenance and disk allocation upddtes Disk
pa;k\ which hive been initialized by the IPK toutine can be labeled by the file edit program, making them
ready for use in the CAMIL file systern. Alsor allocation maps- for each disk pack can be inspected and
changed by the FILEEDIT program, This allows the status of cach disk pack to be examined prior to

allogation of i new file.

A CAMIL program in execution pre;enta a pattern of information on a terminal screen which the
author can observe to partially determine whether his program is exccuting correctly. Simultancously,
variables internal to the program, but not visible to the author, are undergoing continuous change. It is
often very desirable for the author to observe this internal state, but this is quite difficult to uécomplish
- since normally the program would have to be temporarily modified to display these data, along with
desired scree\ output of the program. It would be highly desirable to have a tool which would dlxplayt
information at the request of the user, without requiring modification of the program. It would also be very
timcly to apply this tool in the event of an unanticipated failure of the program during execution.

The dump is guch a tool but has until ‘recently been as crude in form as the programming languages it

“has served.’ The post mortem dump implemented by Sandmayr (Reference 6) has provided dump-like
information in a mnemonic form for the simple data types supported by PASCAL. The CAMIL autopsy
report extengds the basic notions of the PASCAL PMD tq include all user structured data types, such as
packed records arrays; files, sets, and classes. The CAMIL autopsy can also be taken any time during normal
execution of a CAMIL program by pressing the AUTHOR key and requesting an autopsy.

N When an autopsy is requested, the state of the program in central memory is written onto the data
base for presentation to the autopsy dumper. The dumper will use compiler generated descriptions of the
address space of the prograri to produce a mnemonic dump of the data area of all routines active at the
time of the autopsy. It also generates the calling sequence’ of active routines and attaches all of this
information to the program directory. The author can use the program editor to examine this information
at will. The default autopsy covers all variables in the program, but compiler directives allow the autopsy to
be selectively omitted for items in which the programmer has no interest.”

v

Because the character set for the CAMIL system includes 124 hard printable characters, a speciat
printer chain is needed to print all of the character graphics used by the system. This special chain
relinquishes some redundancy of frequently used characters in order to make positions available for the
nonstandard graphics (print slugs) used for CAMIL. The absence of these slugs causes the printér to run -
more slowly, especially when CAMIL programs, including characters which appear only once on the chain,
are listed. To counteract this factor, a print program was written which is capable of reading CAMIL
: direc:tories and source modu]es, and printing the full character set on the printer in a unique two-page
format. LA) _ : :)

Lines in CAMIL mﬂdules are never more than 60.characters in length since the AIS terr’ninal screen
" allows only 64 characters total, and four of these are used by the editor at'the 1¢ft margin for line numbers
- and spacing. The line printer.is capable of printing 136 character liries across a 15-inch-wide continuous
paper form. To make the most of this combination, the print program prints two images side by side on
each sheet of line printer paper. Because the print timé for each line is determined primarily by the time
‘#waltmg for all needed slugs to pass over posxtmns where they are to be pﬂnted pnmmg a w1d¢:r hm: has

hjle The resultmg pfmtaut is thus twn;e as w1de and half as lcmg as the nurmal fﬂrmat and has thg further
umque property that it can be burst and each page folded upon itself, producing a book-like format which
is' much more convenient for program documentation. The major operational benefit of this format is that
the printer runs almost twice as fast on these normally slow listings-and uses half as much paper.

. The print program also prints a program summary at the-end of the listing which cross-references
modules to the page of the, listing where the module was printed. Pages are automatically pumbered at the
bottom and module line aumbers ghd headings can be printed or deleted at the requést of the user. The
prmt program is written in PASCAL and attaches to the CAMIL data b&c through the batch pmgram :

_ m*erface described in the file manager section. . ,

', 4
=7

55

b}

K ' , 51

L W)

VIl CONCLUSIONS

. The language described in thiu paper is a workable usably implemented !mguaﬁe; Itffr_geﬂ&cti, qualitative
improvements in CAMIL derved from experience with the current operational implementation of the

language. These impravements were sufficient fo allow a more than 50% reduction in the size of the-.

program editor which has been translated into the new format as a test case program. In addition, the

" resulting program appears to run both interactivély. faster (subjective observation) and consume less
computer time during execution: The program is also significantly more readable due to the-extensive use .
" of the CAMIL user sentences and improved file structures. We feel that this saving is typical of savings

which could be realized if the current system was converted to the new language format and that the

greatly improved compiler performance would facilitate such an effort and future applications of AL‘S_@Q

new instructional areas.

. A pivotal question whicharlses when such an effort of this type Is -c:ont,empln;gd is whether the

benefits of such a.conyersion outweigh the costs in time; effort, and interference: with the operational
environment. 'If the AIS load should increase, major improvements would be needed ‘to handie the

"additional load imposed upon the computer, demanding. either additional- hardware or improvements in

software. If such an increase was to occur, an alternative to ah increase in hardware performance now
exists, along with qualitative improvements in development facilities. ' o
In the event that demand for AIS computer services does not expand, or if it assumes a different

" direction away from the central, rescarch oriented form that is currently implernented, we:have nevertheless
gained Significant knowledge of the jmplementation approaches to use in future developments -and of the
" types of interactive aids which should be included in future systems. T

!

REFERENCES

" .. Wirth, N. The programming language PASCAL. Acta Informatica, 1971,1,35-63.

Ammann, U. PASCAL-6000 compiler.

Sherwood, B. The TUTOR language. Computer Based Education Research Laboratory, University of.

_ [llinois, Urbana, Illinois. .

4, Stifle, J. The PLATO'IV architecture, CERL Report X-20. Computer Based Education Research

Laboratory, University of Illinois, Urbana, Illinois, April 1972 _
5. Krivacic, R. ‘Re"ﬁnement- and implementatiéh of simulation system. Masters Thesis, Univémity of

i

Colorado, Boulder, Colorado, April 1978.
6. Sandmayr, H. PASCAL post mortem dump program,

52

Do
s

"

:

2

AFPPENDIX A: PROGRAM EXCERPTS

S@veral program - excerpts are included in this appendix to display something of the CAMIL

erivironment to the reader. Unfortunately, the extreme resnonsiveness cannot hc captured on paper nor by

- ‘a sequence of frames showing progress through a program. o
' 1. Display of a syntax error as produced by CAMIL editor sutumstic error display mode, The editor
i ~ user presses a single key which causes the editor to read up the module containing the next error and shnw
hjm an English dc;cripﬁx)n of the error, which he can then mrrect
' }/ I 4 .
. * H
;egments* picture Ep%f? L 8es >
1. draw from 1688, 494 +@ A, R)
2 craw to ZHE,IEE,
3 PLHNE&E?E‘4HE,?EH]; o : :
4. on line 31,0l 5 write larze 'Enroute digplay' sized 3.0,2.
A | _ ' . o ' -
5 con lipe 1, col 48 write . " i T
i i
N \ ;Q
Lrf4r o identifier ot declarad
97
" 53

o R

:k,.é-”"

ﬁ'i

. X 2. A ;1mple typing drill pmgam which places ra,ndnmly selected wmds on the;creen which the ’
t .) ¥ - ' ‘

ypist must cgrrectly copy:

:Séngﬁ+S TYPD . ‘ Space: 747 ;3

L
2

~N O s W

18

11

12

13

14

15

16
17

18

19

2@

22

CONSTAMT IMTEGER 1ires+S, Tpardses IQCde44
ARRAY [0 vecak] OF STRING [8] wde (' puppy tenrich',; 'done’,
'aﬂgiﬁa'!’mufhy'g'clam‘,'dg@dlé','glap . iarﬁagé' :

S tzulu, tguirk !, agqueous ',

'cluster', 'grancla’,

‘mauve ', 'muddle’, jigzle f'H_:EL'!!P:Taffiﬁ',réfﬁ%él,
!gliik',“ilurp',n;mt takilere', twalrus', lzero
' :%u,t:lﬁf.egiei? b, o =4y ium', 'zap =ilch', "werox', 11 +thium',

marum ', ‘ﬁ‘ TERPTRE-3 1 I E=l=1 N Chrikbkle', g-‘lmnﬁ , fent 'y,
ity 'iit; ,timert, Thimid ,z"‘ ervade', 'madiate’) ;

V%QIQELE IHTEGER 1,1,k 2rrs chars,start; STRIMNGTE] wj
FF%WED HF‘F]FII [l1ire=s . lj' I-IZT’dE

CIF [BACKD TDO; %*4T+%=i_;’FHTIH, erre+d; charsel; erase;
FOR 1 TO lipes D0) ':F
FOR ¢ FROM & REFEAT werds DO ¢
s [e RAMDOM v ecak s wadirs (i,)] ks _
[mri+é wel (k] o llnﬁL;ﬁiezg,Qél’Ejﬁlﬁ+23§~

FOR-1TO lires OO

1= O

FOR - FROM & FEFEAT: wotc :
:*xhﬂT;+LEJHTHluu;,

M i (1, 7115 <ha

FOR ko UWTIL K SLEMGTH (wi 00 - _ |
fc@épt FEﬁawl+h [rEarro, Necaps] | char+w [k] ;

TV REY =zhze . THER | N
write char on line(ixd-11, col (j=1E+1 +k)

UNTIL L}- b0 acoept rep Nlth[rﬂﬁr ow]

[0 [

or tine 31, oot ut+il [HE%T] MFi%é .
"o byped U, =h%rf ¥5 "omhars with Y, Errs:d, errors
-

3 1
L *EPUTIHE;”,ltPHTIrE start) 4, 796 chars 2y -&E!FQU;FQQ%

.

5)

l]UF fivecab wdinx; CHAR char;.

EunmrlFﬁ M;Qﬁ liﬂélnrl—iiqgﬁlfj’lj+2jf%FF§Féﬁf§*l;EfE

Sk

ath drill program which fmdﬂ,mly gﬂenérates 'rﬁath prablems |

- (3. Original CAMIL code for a simple m ogram which randon |
ssibility of having pérformed the wrong operation .on the

and chiecks any wrong answer. ngahut the
dllplnyed operands,

" Procedarens Gt VHORTLL g

" y LECLARE DIESR [Lr, I : " .
- 2z DEFINE 'STRING (1) FREAY (4 gpn et te Ty
.y y . : N
= FEraze Scre=n; At Cel 1a, Liﬁe's Wi ites
5 ‘Ualoome to MATH CRFILL; P TEGT to start'; Pauss ,
6 FREPEAT 18 TINES DO | .- : » .
- 7 BEGIN ON HELF DO (hrlte shé. Pauzel\; - trwﬁ?, o
B Eras= Screen; ft fol 22, Lin=s 38 m,iﬁﬁ "Help ﬁvallable HAN
9 1«RAND () =1 2; r#FHID()sls, épﬁéleitrFHND()ki *l
18 CAZE o select OF
i (] ansel+w; 2| ﬁﬁF];F; 31 §ﬂ§FlSP; él'aﬂ%ﬁl*r): ‘ -
12¢ [JUDGE . C T : y
13 PEGIN Erase Lins=]ag} ‘ SN : :
14 At Col 5, Lire |F Write 1 With Magritude 2; .
is Write ép[@pdelﬂ t], Write v With Magnitude 2 ur;te
, 16 ‘Accept At Cel ;Line 18; try&tfy 1; - .
17 END WITH S
18 EGIN . C : -
19 ars| (Write ' okl For.i Seconds;IF try=1 THEN- @Pfﬁf¥=§r
2a lsr| QUWrite ' ol did you add?’ For 1 Seconds; > :
21 J . FLARG+FALSBE) ; , . i ' '
22 l-rllrite ' nd did you subtract' F'afnl Seconds;
23 | T FLAGHFALSE) 3 . S ,
24 Ixrf(Write ' ng did vol multiply’ For 1 Seconds;-
zs | T FLAGEAYSE) 3 - S :
; 26 | l*P!(Nr;te " ng did wou divide' Feor 1 Sezorigs;
27 J,FLAG+FALSE) '
28 END s
; 25 |ELSE . LR
3d PEGIN o ' * : S B -
31 IF tryzg THEM‘(MFlte " Answer was'; J,FLAGTRUE; .
1 ‘Write ans Mxth Magnitude 4; PauSE Far 1 Seaﬁﬁds)'
. £ ELSE Write ' no Try again For 2z Seconds
3 “END; . ')
4 END; : ' - : . .
§ . Erase Screen; At Cel 5, Line 28 Write 'Number correst = ;.
B lrite cks; At Col 'S, Line 21 Write 'Humber missed =';
71 Write 18-oks; ;. ‘
i : ' & =
4. CAMIL II code for the same math drill program ’
i
e
. 59
S o 55 |

ERIC S : ’

Aruitoxt provided by Eic:

‘?raceduré

Epace]812 7 }::1

m\

25

NETHDEILLZ _ N .
1 CDNSTHNT ARRAY [4] OF CHAR op+('+ T Tk, ey o
2 VﬁEIﬁELE INTEGER 1,r,ans, cp%elect oks; ‘
"4 . [erase; on line 5, Cél 19 until [NE&T] write
5 "Welcome to MATH DRILL Press NEXT to start";
6 | REPEAT 1@ DO ,
7 TIF [HELP, BLUE _BACK] DD wrlte ans until. [NQXT],- y
8 - _era%e, 1+QHND@HK12,.F+R9NDGHx12 piélgct+RﬁNDGHx3 +1;
CASE opselect ' | e
e C1i ah%*l+f, 2| ansel- ﬁ,jBT ahselxr; 4| aﬁsfl+r];
11 |write "-HELP- available" on line 38, col 28; |
12 on line 1§,col 5 write l 2, @p{ép%glégtjsl rit, "=13
13 T LOOPLIMIT+3; _ o, S ‘
14 JUDGE accept on line iﬁ @él -
15 e [ans |[ok; pause for 1 sec; IF J,CDUNT 1 THEN @k%%&k5+1]
16 L+r|[no; write " did you add?” for 1 sec |
17 1-+[no; write " did yeu subtract?" for 1 sec;
18 Qir|[noy write " did you multiply®® for q- %ecj
19 1+ P|Eﬂ§, Mﬁité " odid you d1¥1de?" f@ﬁ 1 gecj
.28 | | ELSE ‘ I A S
21 [IF. JFCGUNT-B THEN write " ﬁﬁ%wEﬁ was “saﬂgzé_fﬁf'z sec
22 | ELSE, Eﬁé,vwfltg Tﬁy agalﬂ fOﬁ 1 sec -
23 : :
24 | erase; on liﬁgfég z@l 5. wFlfé " Numbear coﬁreet =", 0ks,"
Numbéf m;ﬁ%éd =", 1 ~®k;AQﬁt1l [NEST] o

5 Listing fnr a sunple “HANGMAN“ game program which reqmres that the player guess letters used -
' to spe]l a hidden word. Each letter guessed which dc:es not appear in the word results in parts of the man .
ithe is “hung.” .= - . -

Space: 553 b3

C Proceaduresa: HPN\NQN

1 [The clas i HﬁNLHHN game, BUES3 the lEttEFﬂ xﬁ & ez id)
Ty CONSTANT : .

4 IMTECER rwmo fwerdz«28, x+208, yei25;

< ﬂFPﬁf[H ﬁum&fmarﬁg] OF STRING (8] words+.

g s simian’ kéﬂ@& ‘computer’, ‘geagull’

? 'méﬁgrs$5'i élgqueﬁt ‘camel’ tartaxag

8 Chaildingt, ‘duck’, ’aircraftf ;m‘ig‘}"nr’ng"'a.li

3 ‘pumpkan’, ‘viclent’, ‘erudite’; 'swift’, i .
1o "helpless', “diligant®, ‘'superior’, ‘beastly’,- . : .

i tgress’); : - : .

&
Fadt

+ 15 VARIFBLE
" 14, INTEGER 1, right,missad, salact;
15, SET OF o: ﬁumgfmsrjg uzad;
16 - “SET.OF ‘a’:'z’ g¥ar;1ﬂwd uzedﬁhara.’

L 17 STRING (8] word;

O

56

60 .

1 g . I ‘ :
« y L .y
= 7 ~ -v
ST e T , ‘ S s , i
To19 [agaif L - e el _
1 , ;;Z-E arase; . right:—ﬁ misseded; charsinude {1; usedcharse(1; RN k . e
g T M z1 | REPEAT ‘numofuwdrdix3 UNTIL = (select’ ¢ used) DO . . -
‘ z2 select « RANDOM x rumo fuords; Vi v R N
23 | ubedeused + [2elect]; wordewsrds [3elert] PR . _
24 FoR i TO LENGTH(werd) DO v:harslmd#aharémmd + Eulnrd[ﬂ]: o . ;
" 25 |on lina 4;c0l 5 sized 3.8 write large 'The Haﬁinaﬁ Game'; . oo VRS
27 |(Draw the Gallows) = o S A
28 | connect x+250,y | %, ¥y X,Y-1080, x+250,y-160, - ST S
29 Fx+ 280, goaaa’, %*+55,+3084, 3{*55,}4’*&‘2?5_% : L
38 JLIDGE a::;,ept rap uu‘th[ﬁéal"r‘ccw nocaps]
- (I IF‘ b RE’?‘ g5é-4t§lﬁér§ THEN - o _ .
3 '\. [on line 25, A 10 for 1 5&? write"You uau ‘that e:haF B ;
3¢ || LI FLAGFALS e, .
L4 ELsE
| ugaé”ﬂ-.iu‘g..r.dgq hars+ (FLKEYI; . . - o
o OIIF TLBEY € charsinwd THEN ’ , : K BN
’ P TFOR y,TO LENGTH (word) DO - g
a 1. ;u IF lElklnLlJ[l] THEN ’
3 I __{: l:up ite J,KEY on line ZB. col (Hlﬂ).,mgh‘tﬂ‘lghtﬂ
40 i FL1E Jght-uwwﬁnmrm TN C
11 : s [wrate "You win® for 3'sec Lmtnl [MEXT]
o i g s[pr’r line 25, col- 18; GDTD again o C e , : - R
ERE] l"’ IV FLAGFALSE } o ' B
* ve gl ' leaaedrrnla adety; . R) ST L s : ‘
le | CASE' misaad OF ST . e B)
v M1 Podraw from x+5,945 to x+55,y+58; {leit leg) | 4)
1a 1) |21 draw from x+185,5+5 to %55, yy+58; (right leg) *
- 19 1. | 3| draw from ‘x+55 v+58 to x+55, ytl&E. {trurk}
I T | | 44 draw rrom x+55,9+158 to x+5,p+188; {left arm} 4 (e
’ ’ ES o & dran frem ':sz-t';fisigﬂ%ﬂ te xﬂES,gﬂHE. {(right ar m]) : o
Y 2 al 61 circle 10 at %+55/y+188 sccentricity 2.8 }{head} o ‘
-5 T 71 dota x+5@,v4198, 'x¢68,y+190; (g}egz')f R ‘ ’
. b T I E | B dots we55,u+ 185, x+54,04184, . _ : o)
25 Lol 4458, y+184, x+56,y+184; (r-e%e) I a
28 17 91 Cormect we§1,9+178, X453,9+168, %+57, }msa : !
ez) : x+59; w;?zﬁ (meuth) : -
26 N 141 v ‘ B
x4 di’am fFC‘I‘ﬁ ®+55, gﬁz?s to =+55, S 200 '
' ' ' ,V\n lina 20, col' 1l write word; i
31 s 2 lime 28, col 10 write *You hung y@ur;&elf
) B 1 for 3 see until [NEXTYT ;
2 LGQTD again; . L
3
4 T, FLAGFELSE; -)
: - ' ‘ :
B L N
7oL P :
. : 9 L write "Not a letter” for 1| se¢ on -ling 25, col 18 .
. “ ;. , : Vv
b : . B
i

Aruitoxt provided by Eic:

L 6. A ﬂngl: fmme tﬂken during the ekecution of the @ne The user ls trying to guess the wnrd
benstlf‘ but is very t:luse to being’ “hung »

Aruitoxt provided by Eic:

- ‘,gppéﬁbixs;cmmﬁ.mcmqg SYNTAX CHARTS .

s ., v : ;, v
< ; . :
¥ 4 L

The fcﬂcwing charts represent the syntax ﬁf ihe CAME I language griphically “The’ explanntlnn uf
chlrt notation is included in thg I:angunge Deacrlption section of this report, The follmldn!g charts do not’
necmﬂly expl:in ummtic_ relti—fcﬁons of the la,nguage, which are explamed mmé full}f?hmughaut the

g

- - o o
| typipae — T . K
I A : B

i i . B . ‘ S - ’ AN

» 2 Ta s . 2
L E_ _ s —_ i *]
; I i

ang| g L
il E, £ang) gat . . . L

PRI
p o™

CONSTANY. —= Uyprne

] - b Fitgrel ial

n seolar AR aeulnt
Lt esnilant

LT
i

ERIC

Aruitoxt provided by Eic:

" lypaspes

G- (>

u
3

¢

scalar
consiant

"

=

. "ECLEJECDRD; HBEE"‘.) -v';c.-mnmje_" i

- subrange —

" string
conslant

scalar

&

i ,"'.*.,';{j"“l T TH a{"_}—-i oyt]"{ S e e — e

Jor———r

| Lo

. \. - LI |

Rl . -
= 1isid o T

LM

1

'TIT
[T
LN

IEM!H!! !li'

:inulil 3

ERIC: ;-

PAruntext provided by enic [N

y

w7

- e

. iam o
rpi

e §iligil fain

" rampnind

e

vit tl!]llll

l:p;!!ii- i e e

e

